大数据学习之Flink算子、了解DataStream API(基础篇一)

2024-01-24 10:52

本文主要是介绍大数据学习之Flink算子、了解DataStream API(基础篇一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DataStream API (基础篇)


注: 本文只涉及DataStream

  • 原因:随着大数据和流式计算需求的增长,处理实时数据流变得越来越重要。因此,DataStream由于其处理实时数据流的特性和能力,逐渐替代了DataSet成为了主流的数据处理方式。

目录

DataStream API (基础篇)

前摘:

一、执行环境

1. 创建执行环境

2. 执行模式

3. 触发程序执行

二、源算子(source)

三、转换算子(Transformation)

四、输出算子(sink)


前摘:

一个 Flink 程序,其实就是对 DataStream 的各种转换。具体来说,代码基本上都由以下几 部分构成,如图所示:

  • 获取执行环境(Execution Environment)
  • 读取数据源(Source)
  • 定义基于数据的转换操作(Transformations)
  • 定义计算结果的输出位置(Sink)
  • 触发程序执行(Execute)

其中,获取环境和触发执行,都可以认为是针对执行环境的操作。所以本章我们就从执行 环境、数据源(source)、转换操作(Transformation)、输出(Sink)四大部分,对常用的 DataStream API 做基本介绍。

一、执行环境

1. 创建执行环境

  • 编写Flink程序的第一步就是创建执行环境。
  • 我 们 要 获 取 的 执 行 环 境 , 是 StreamExecutionEnvironment 类的对象,这是所有 Flink 程序的基础
  • 在代码中创建执行环境的 方式,就是调用这个类的静态方法,具体有以下三种。
  1. getExecutionEnvironment
    最简单的方式,就是直接调用 getExecutionEnvironment 方法。它会根据当前运行的上下文 直接得到正确的结果;
    //此处的 env 是 StreamExecutionEnvironment 对象
    val env = StreamExecutionEnvironment.getExecutionEnvironment
  2. createLocalEnvironment
    这个方法返回一个本地执行环境。可以在调用时传入一个参数,指定默认的并行度;如果 不传入,则默认并行度就是本地的 CPU 核心数。
    //此处的 localEnvironment 是 StreamExecutionEnvironment 对象
    val localEnvironment = StreamExecutionEnvironment.createLocalEnvironment()
    
  3. createRemoteEnvironment
    这个方法返回集群执行环境。需要在调用时指定 JobManager 的主机名和端口号,并指定 要在集群中运行的 Jar 包。

    //此处的 remoteEnv 是 StreamExecutionEnvironment 对象
    val remoteEnv = StreamExecutionEnvironment.createRemoteEnvironment("host", // JobManager 主机名1234, // JobManager 进程端口号"path/to/jarFile.jar" // 提交给 JobManager 的 JAR 包
    )
    

2. 执行模式

而从 1.12.0 版本起,Flink 实现了 API 上的流批统一。DataStream API 新增了一个重要特 性:可以支持不同的“执行模式”(execution mode),通过简单的设置就可以让一段 Flink 程序 在流处理和批处理之间切换。这样一来,DataSet API 也就没有存在的必要了。

  • 流执行模式(STREAMING) 这是 DataStream API 最经典的模式,一般用于需要持续实时处理的无界数据流。默认情 况下,程序使用的就是 STREAMING 执行模式。
  • 批执行模式(BATCH) 专门用于批处理的执行模式, 这种模式下,Flink 处理作业的方式类似于 MapReduce 框架。 对于不会持续计算的有界数据,我们用这种模式处理会更方便。
  • 自动模式(AUTOMATIC) 在这种模式下,将由程序根据输入数据源是否有界,来自动选择执行模式

由于 Flink 程序默认是 STREAMING 模式,我们这里重点介绍一下 BATCH 模式的配置。 主要有两种方式:

(1)通过命令行配置

bin/flink run -Dexecution.runtime-mode=BATCH ...

在提交作业时,增加 execution.runtime-mode 参数,指定值为 BATCH。

(2)通过代码配置

val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setRuntimeMode(RuntimeExecutionMode.BATCH)

3. 触发程序执行

我们需要显式地调用执行环境的 execute()方法,来触发程序执行。execute()方法将一直等 待作业完成,然后返回一个执行结果(JobExecutionResult)。

env.execute()

二、源算子(source)

Source源算子(基础篇二)

三、转换算子(Transformation)

持续更新中

四、输出算子(sink)

持续更新中

这篇关于大数据学习之Flink算子、了解DataStream API(基础篇一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/639467

相关文章

Mysql数据库中数据的操作CRUD详解

《Mysql数据库中数据的操作CRUD详解》:本文主要介绍Mysql数据库中数据的操作(CRUD),详细描述对Mysql数据库中数据的操作(CRUD),包括插入、修改、删除数据,还有查询数据,包括... 目录一、插入数据(insert)1.插入数据的语法2.注意事项二、修改数据(update)1.语法2.有

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

详解如何在SpringBoot控制器中处理用户数据

《详解如何在SpringBoot控制器中处理用户数据》在SpringBoot应用开发中,控制器(Controller)扮演着至关重要的角色,它负责接收用户请求、处理数据并返回响应,本文将深入浅出地讲解... 目录一、获取请求参数1.1 获取查询参数1.2 获取路径参数二、处理表单提交2.1 处理表单数据三、

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Spring Validation中9个数据校验工具使用指南

《SpringValidation中9个数据校验工具使用指南》SpringValidation作为Spring生态系统的重要组成部分,提供了一套强大而灵活的数据校验机制,本文给大家介绍了Spring... 目录1. Bean Validation基础注解常用注解示例在控制器中应用2. 自定义约束验证器定义自

Java对接Dify API接口的完整流程

《Java对接DifyAPI接口的完整流程》Dify是一款AI应用开发平台,提供多种自然语言处理能力,通过调用Dify开放API,开发者可以快速集成智能对话、文本生成等功能到自己的Java应用中,本... 目录Java对接Dify API接口完整指南一、Dify API简介二、准备工作三、基础对接实现1.

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel