中文数据让LLM变笨?

2024-01-24 00:04
文章标签 数据 中文 llm 变笨

本文主要是介绍中文数据让LLM变笨?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片

我这里先贴一下论文的原链接:

https://arxiv.org/abs/2401.10286

然后贴一下我翻译+标注的下载链接:https://gitee.com/chatpaper/arXiv_top_chinese/blob/master/0801_top/%E4%B8%AD%E6%96%87%E4%BC%9A%E8%AE%A9LLM%E5%8F%98%E7%AC%A8%EF%BC%9F.pdf

先说一下我看这篇文章的动机:

  1. 中文是不是真的太烂了,导致处理中文任务也比不过英文基座模型?

  2. 有没有是分词不兼容,模型结构、大小等原因导致的?

OK,我们先看它的摘要部分翻译:

尽管在语言模型应用中,任务与训练语料库之间的一致性是一个基本共识,但我们的一系 列实验和我们设计的度量标准揭示,基于代码的大型语言模型(LLMs)在非编码中文任务 中显著优于在与任务紧密匹配的数据上训练的模型。此外,在对中文幻觉高度敏感的任务 中,实验结果表明,具有较少中文语言特性的模型,取得了更好的性能。我们的实验结果可 以在中文数据处理任务中很容易地被复制,例如为检索增强生成(Retrieval-Augmented Generation, RAG)准备数据,只需简单地用基于代码的模型替换基础模型。此外,我们的研究 为讨论哲学上的“中文房间”思想实验提供了一个独特的视角。

上面的结论,直接跳到实验结果中,即4.2.2 Less Chinese Knowledge, Less Hallucination

原文翻译:

表3展示了DeepSeek代码6.7b和Code Llama 7b的评估结果,它们都是在代码数据上训练的,并且具有几乎相 同数量的参数。DeepSeek代码6.7b得分低于Code Llama 7b在EXPERTS上的主要原因是,DeepSeek代码6.7b的 回答有时包含一些源材料中没有的信息【也就是幻觉比较重】。CCR指标也证实了Code Llama 7b具有较少 的幻觉。在我们的知识生成任务中,原始内容的逐字复制是必要的,因此具有较少中文知识的基于代码 的LLM表现更好【这个其实比较难评了,DeepSeek Code 6.7b和Code Llama 7b,这两个模型的训练细节都 完全不一样,没法直接归因到中文数据吧?】。实验结果表明,过多的中文知识可能会干扰任务的完成。这 一结果使我们深思:更大的模型可能拥有更多知识,然而在这个任务中,我们并不需要一个更有知识的模 型,而是需要一个更忠实的模型,减少幻觉。

贴一下表3:

图片

这里的结果,就让我比较迷惑了,如果是同样的网络结构,一个简中版,一个英文版,这样的对比,我是认可的,但两个架构的模型,大小,数据,配比,训练方式都不完全一样,性能的差异,直接归因到中文数据上,我是不太认同的。

但OpenAI的苹果哥也表示同样的观点,所以还是值得大家进一步做探究的,期待更加严格的对比实验。

图片


233,和论文作者沟通了一下,发现我确实忽略了论文最大的一个贡献点:代码模型比普通llm在数据生成任务中效果要好很多,甚至于比论文中没提到的3.5和4.0效果都好,这个发现,对社区的帮助还是很大的。

作者希望大家多关注代码模型在非代码场景下的应用;关注我们提出的抹掉模型中文能力后,用同样中文数据用同样超参和轮数SFT后,在中文评测集上评测模型真实能力的避免训练数据污染的评测方法。

来源 知乎:强化学徒

这篇关于中文数据让LLM变笨?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637951

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

RedisTemplate默认序列化方式显示中文乱码的解决

《RedisTemplate默认序列化方式显示中文乱码的解决》本文主要介绍了SpringDataRedis默认使用JdkSerializationRedisSerializer导致数据乱码,文中通过示... 目录1. 问题原因2. 解决方案3. 配置类示例4. 配置说明5. 使用示例6. 验证存储结果7.

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock