Linux-4.20.8内核桥收包源码解析(四)----------netif_receive_skb

2024-01-23 20:58

本文主要是介绍Linux-4.20.8内核桥收包源码解析(四)----------netif_receive_skb,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:lwyang?
内核版本:Linux-4.20.8

netif_receive_skb实现了报文递交到上层协议模块,具体递交方法为由指针func指向的函数确定。首先会遍历ptype_all链表,输入一份报文到ptype_all链表的输入接口,然后通过桥转发报文,若转发成功则无需输入到本地,否则遍历ptype_base链表,根据接受报文注册的协议类型调用对应的报文接受例程。

比如IP协议使用ip_packet_type变量来注册,把func设置为ip_rcv函数,如果数据包的上层类型是ETH_P_IP,pt_prev->func必然调用ip_rcv函数,把数据包递交到IP层协议模块

前文提到网卡驱动最终会调用__netif_receive_skb 进入上层协议处理

static int __netif_receive_skb(struct sk_buff *skb)
{int ret;if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {...} elseret = __netif_receive_skb_one_core(skb, false);return ret;
}
static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
{...//这里的pt_prev(packet_type) 为传出参数ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);if (pt_prev)//这里不是调用deliver_skb,而是直接调用pt_prev->func,减少了一次增加skb->users,从而减少了一次skb的释放ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);return ret;
}

接下来才是真正进行处理的函数__netif_receive_skb_core

static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,struct packet_type **ppt_prev)
{struct packet_type *ptype, *pt_prev;rx_handler_func_t *rx_handler;struct net_device *orig_dev;bool deliver_exact = false;int ret = NET_RX_DROP;__be16 type;//记录收包时间,netdev_tstamp_prequeue为0,表示可能有包延迟net_timestamp_check(!netdev_tstamp_prequeue, skb);//记录原始收包网络设备orig_dev = skb->dev;//此时data指针是指向IP层头部的(没有vlan的情况下)//设置network_header指针 skb->network_header = skb->data - skb->head;skb_reset_network_header(skb);if (!skb_transport_header_was_set(skb))//设置transport_header指针,这里也是指向IP层skb_reset_transport_header(skb);//设置mac_len的值为以太网报文头部长度,一般为mac_len = 14// skb->mac_len = skb->network_header - skb->mac_header;skb_reset_mac_len(skb);//指向前一个packet_type 的指针为NULL,设置此指针的目的是为了提高效率//这样相当于最后一个pt_prev 指向的函数未被执行,最后一次向上层传递时,不需要在inc引用,回调中会free,这样相当于少调用了一次freept_prev = NULL;another_round://设置skb的skb_iif,记录数据包收包网络设备的索引号skb->skb_iif = skb->dev->ifindex;//将处理此数据包cpu的softnet_data结构统计已处理数据的字段processed加1__this_cpu_inc(softnet_data.processed);//如果报文为带vlan报文,在eth_type_trans中设置的skb->protocol 为 ETH_P_8021Q 或 ETH_P_8021ADif (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||skb->protocol == cpu_to_be16(ETH_P_8021AD)) {//剥离vlan标签 // // |---2 bytes---|---|-|------------| 一共4字节vlan信息// 前两个字节为标签协议标识TPID(Tag Protocol Identifier),值为0x8100,后// 后两个字节为标签控制信息TCI(Tag Control Information),前三位Priority表明帧的优先级,接下来的一位cfi用于以太网与FDDI和令牌环网交换数据时的帧格式,最后12位VLAN ID,一共4096个//首先判断skb = skb_share_check(skb, GFP_ATOMIC);判断skb是否共享(skb->users!=1 ?),如果共享则克隆一份,因为后续会修改skb的network_header,transport_header,vlan等信息//并将原skb的引用计数-1(skb->users-1),如果不克隆则会影响共享此skb的其他函数,如果此skb为不共享,则直接返回此skb//然后__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);设置skb->vlan_proto,skb->vlan_tci = VLAN_TAG_PRESENT | vlan_tci;//记录vlan协议到vlan_proto,以及vlan控制信息到vlan_tci 并将VLAN_TAG_PRESENT位置为1//接下来vlan_set_encap_proto  设置skb->protocol 为真正的三层协议//skb_reorder_vlan_header 将vlan信息从数据包中剥离,具体做法为从2层头部到vlan域的信息整体(目的mac+源mac)向后移4字节(vlan信息长度)//最后就是重置skb的network_header,transport_header,mac_len信息skb = skb_vlan_untag(skb);if (unlikely(!skb))goto out;}//如果tc_skip_classify为1,则跳过ETH_P_ALL 的协议处理,跳过流分类处理if (skb_skip_tc_classify(skb))goto skip_classify;//如果pfmemalloc 为真,则跳过ETH_P_ALL 的协议处理if (pfmemalloc)goto skip_taps;//如抓包程序未指定设备,遍历ptype_all链表,输入一份报文到ptype_all链表中的协议族,处理ETH_P_ALL类型的数据包list_for_each_entry_rcu(ptype, &ptype_all, list) {if (pt_prev)ret = deliver_skb(skb, pt_prev, orig_dev);pt_prev = ptype;}//遍历skb收包网络设备的ptype_all链表,处理与具体dev绑定的ETH_P_ALL协议处理例程list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {if (pt_prev)ret = deliver_skb(skb, pt_prev, orig_dev);pt_prev = ptype;}skip_taps:
#ifdef CONFIG_NET_INGRESS...//流分类处理
#endif//skb->tc_redirected置为0skb_reset_tc(skb);
skip_classify:if (pfmemalloc && !skb_pfmemalloc_protocol(skb))goto drop;//判断是否为vlan报文,并且vlan_tci 的VLAN_TAG_PRESENT位为1(skb_vlan_untag中进行过设置)if (skb_vlan_tag_present(skb)) {//若pt_prev 不为空,则表示进行过ETH_P_ALL 协议类型处理,执行刚刚链表的最后一个协议处理函数,并将pt_prev 置为NULLif (pt_prev) {ret = deliver_skb(skb, pt_prev, orig_dev);pt_prev = NULL;}//vlan处理函数// skb_share_check判断skb是否共享,共享则克隆// skb->dev = vlan_dev; 设置skb的dev为vlan网络设备,一般如eth0.10(vlan为10的设备)// 若skb->dev和vlan_dev的mac地址不同,则还需要判断skb目的mac地址是否等于vlan设备的目的mac,若等于则设置skb->pkt_type = PACKET_HOST// skb->priority 根据vlan_tci中的优先级信息设置skb的优先级// skb->vlan_tci = 0; 将vlan控制信息置为0,不需要此信息了// 更新vlan设备的收包统计信息if (vlan_do_receive(&skb))// 完成vlan处理后,改变了skb->dev,跳转到another_round重新执行// 此时有一个问题:是否会重复执行ETH_P_ALL 协议处理函数,答案:不会。因为一般会判断orig_dev和skb->dev一否一致,此时已经不一致了goto another_round;else if (unlikely(!skb))goto out;}//若rx_handler 不为NULL,则进入桥处理,rx_handler 在br_add_if中注册的这个函数rx_handler = rcu_dereference(skb->dev->rx_handler);if (rx_handler) {//若pt_prev 不为空,则表示进行过ETH_P_ALL 协议类型处理,执行刚刚链表的最后一个协议处理函数,并将pt_prev 置为NULLif (pt_prev) {ret = deliver_skb(skb, pt_prev, orig_dev);pt_prev = NULL;}//执行rx_handler 函数,为br_handle_frame 函数,在br_add_if中注册的这个函数// 下面根据桥处理的返回值进行下一步处理switch (rx_handler(&skb)) {//skb was consumed by rx_handler, do not process it further.// 桥已经处理该数据包,该数据包会以其他的方式传送case RX_HANDLER_CONSUMED:ret = NET_RX_SUCCESS;goto out;//Do another round in receive path. This is indicated in case skb->dev was changed by rx_handler//桥改变的数据包的skb->dev,需要another_round进行再一次的处理case RX_HANDLER_ANOTHER:goto another_round;//Force exact delivery, no wildcard//数据包只会传送到注册为具体网络设备(ptype->dev == skb->dev)的协议处理例程case RX_HANDLER_EXACT:deliver_exact = true;//Do nothing, pass the skb as if no rx_handler was called//正常传送case RX_HANDLER_PASS:break;default:BUG();}}...//记录IP层的协议类型type = skb->protocol;/* deliver only exact match when indicated *///若未设置精确传送,向未指定设备的协议处理例程传送一份数据if (likely(!deliver_exact)) {deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,&ptype_base[ntohs(type) &PTYPE_HASH_MASK]);}//交给与原设备的绑定的具体处理协议例程处理deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,&orig_dev->ptype_specific);//如果skb的当前设备与原设备不同(进行过vlan处理或桥处理),则交给绑定当前设备的具体处理协议函数处理if (unlikely(skb->dev != orig_dev)) {deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,&skb->dev->ptype_specific);}//如果pt_prev 不为空,表明上面链表处理过程中还留下最后一个协议处理函数还没有执行//此时就将这个协议处理函数传出到外层函数__netif_receive_skb_one_core调用pt_prev->func进行处理//外层函数处理时就不需要deliver_skb来增加skb->users,减少了一次skb的释放if (pt_prev) {if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))goto drop;*ppt_prev = pt_prev;} else {
drop:if (!deliver_exact)atomic_long_inc(&skb->dev->rx_dropped);elseatomic_long_inc(&skb->dev->rx_nohandler);kfree_skb(skb);/* Jamal, now you will not able to escape explaining* me how you were going to use this. :-)*/ret = NET_RX_DROP;}out:return ret;
}

【补充一个小细节】
带有vlan信息时,在skb_vlan_untag(skb);函数中,是怎么获取到vlan信息的?

//vlan头部结构体
struct vlan_hdr {//vlan 控制信息(2字节)__be16 h_vlan_TCI;//报文实际协议类型(2字节)__be16 h_vlan_encapsulated_proto;
};

eth_type_trans函数中,将data指针下移14字节(skb_pull_inline(skb, ETH_HLEN);),如果此时报文带vlan,vlan信息4个字节,前两个字节为标签协议标识TPID(Tag Protocol Identifier),值为0x8100,后两个字节为标签控制信息TCI(Tag Control Information),那么此时data就指向的是TCI控制信息,因为以太网源和目的mac地址12字节,加上vlan标签协议标识2字节正好14字节
在这里插入图片描述
vhdr = (struct vlan_hdr *)skb->data; 这个函数将data后的四字节数据赋给vlan_hdr,那么h_vlan_TCI就为vlan标签控制信息,h_vlan_encapsulated_proto 即为真正的以太网协议类型。后续函数vlan_set_encap_proto 会设置skb->protocol = vhdr->h_vlan_encapsulated_proto

协议处理例程的注册
packet_type结构作为网络层的输入接口,系统支持多种协议族,因此每个协议族都会实现一个报文处理例程,此结构的功能时在链路层和网络层之间起到了桥梁的作用,在以太网上,以太网帧到达主机后,会根据协议族的报文类型调用相应的网络层接受处理函数

为向上层协议递交设备驱动收到的数据包,内核提供了表结构ptype_baseptype_all,它们都是struct packet_type类型,ptype_base负责把不同类型(协议)的数据包递交给对应的上层协议模块,ptype_all表不区分包的协议类型,负责把所有数据包递交给某个注册的上层模块
在这里插入图片描述

struct packet_type {//网络层数据包协议类型__be16			type;	/* This is really htons(ether_type). */bool			ignore_outgoing;//接受从指定网络设备输入的数据包,若为NULL,则表示接受全部网络设备的数据包struct net_device	*dev;	/* NULL is wildcarded here	     *///协议入口处理函数int			(*func) (struct sk_buff *,struct net_device *,struct packet_type *,struct net_device *);void			(*list_func) (struct list_head *,struct packet_type *,struct net_device *);bool			(*id_match)(struct packet_type *ptype,struct sock *sk);//存储各协议族私有数据void			*af_packet_priv;//链接不同协议族报文接受例程的指针struct list_head	list;
};

在协议初始化时,内核调用dev_add_pack函数来注册某类数据包的递交方法

void dev_add_pack(struct packet_type *pt)
{struct list_head *head = ptype_head(pt);spin_lock(&ptype_lock);//将此packet_type 添加到对应的协议处理链表中list_add_rcu(&pt->list, head);spin_unlock(&ptype_lock);
}static inline struct list_head *ptype_head(const struct packet_type *pt)
{//若packet_type的协议类型为ETH_P_ALL并且dev不为空,则将此packet_type添加到对应dev的ptype_all链表中,否则加到全局ptype_all链表//若packet_type的协议类型不为ETH_P_ALL并且dev不为空,则将此packet_type添加到对应dev的ptype_specific链表,否则就加到全局ptype_base链表中if (pt->type == htons(ETH_P_ALL))return pt->dev ? &pt->dev->ptype_all : &ptype_all;elsereturn pt->dev ? &pt->dev->ptype_specific :&ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
}

例如IP协议处理例程的注册

static int __init inet_init(void)
{...dev_add_pack(&ip_packet_type);...
}//ip_packet_type变量为上层IP数据包提供递交方法
static struct packet_type ip_packet_type __read_mostly = {//定义其注册的协议类型为ETH_P_IP.type = cpu_to_be16(ETH_P_IP),//确定ETH_P_IP的协议处理函数为ip_rcv.func = ip_rcv,.list_func = ip_list_rcv,
};

桥处理函数的注册
br_handle_frame这个函数的初始注册地点是在桥添加接口的时候,注册在桥某一个接口上

int br_add_if(struct net_bridge *br, struct net_device *dev, struct netlink_ext_ack *extack)
{struct net_bridge_port *p;int err = 0;unsigned br_hr, dev_hr;bool changed_addr;...//创建一个新的桥接口 p->br = br; p->dev = dev;p = new_nbp(br, dev); ...//register receive handler,将br_handle_frame 函数注册到此桥接口上err = netdev_rx_handler_register(dev, br_handle_frame, p);...
}int netdev_rx_handler_register(struct net_device *dev,rx_handler_func_t *rx_handler,void *rx_handler_data)
{...//将net_bridge_port 赋给dev网络设备的rx_handler_datarcu_assign_pointer(dev->rx_handler_data, rx_handler_data);//将br_handle_frame 赋给dev网络设备的rx_handlerrcu_assign_pointer(dev->rx_handler, rx_handler);...
}

接下来再看br_handle_frame 桥处理流程, 见下节…


以上仅代表个人理解,如若觉得有理解不当的地方还请不吝赐教?

这篇关于Linux-4.20.8内核桥收包源码解析(四)----------netif_receive_skb的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/637501

相关文章

Linux之systemV共享内存方式

《Linux之systemV共享内存方式》:本文主要介绍Linux之systemV共享内存方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、工作原理二、系统调用接口1、申请共享内存(一)key的获取(二)共享内存的申请2、将共享内存段连接到进程地址空间3、将

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

快速修复一个Panic的Linux内核的技巧

《快速修复一个Panic的Linux内核的技巧》Linux系统中运行了不当的mkinitcpio操作导致内核文件不能正常工作,重启的时候,内核启动中止于Panic状态,该怎么解决这个问题呢?下面我们就... 感谢China编程(www.chinasem.cn)网友 鸢一雨音 的投稿写这篇文章是有原因的。为了配置完

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Linux命令之firewalld的用法

《Linux命令之firewalld的用法》:本文主要介绍Linux命令之firewalld的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux命令之firewalld1、程序包2、启动firewalld3、配置文件4、firewalld规则定义的九大