记录yolov8_obb训练自己的数据集

2024-01-23 17:04
文章标签 数据 训练 记录 yolov8 obb

本文主要是介绍记录yolov8_obb训练自己的数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.数据集制作

1.标注软件:roLabelImg

roLabelImg是基于labelImg改进的,是用来标注为VOC格式的数据,但是在labelImg的基础上增加了能够使标注的框进行旋转的功能。

2.数据格式转换

2.1 xml转txt

# 文件名称   :roxml_to_dota.py
# 功能描述   :把rolabelimg标注的xml文件转换成dota能识别的xml文件,
#             再转换成dota格式的txt文件
#            把旋转框 cx,cy,w,h,angle,或者矩形框cx,cy,w,h,转换成四点坐标x1,y1,x2,y2,x3,y3,x4,y4
import os
import xml.etree.ElementTree as ET
import mathcls_list=['mouse']
def edit_xml(xml_file, dotaxml_file):"""修改xml文件:param xml_file:xml文件的路径:return:"""#dxml_file = open(xml_file,encoding='gbk')#tree = ET.parse(dxml_file).getroot()tree = ET.parse(xml_file)objs = tree.findall('object')for ix, obj in enumerate(objs):x0 = ET.Element("x0")  # 创建节点y0 = ET.Element("y0")x1 = ET.Element("x1")y1 = ET.Element("y1")x2 = ET.Element("x2")y2 = ET.Element("y2")x3 = ET.Element("x3")y3 = ET.Element("y3")# obj_type = obj.find('bndbox')# type = obj_type.text# print(xml_file)if (obj.find('robndbox') == None):obj_bnd = obj.find('bndbox')obj_xmin = obj_bnd.find('xmin')obj_ymin = obj_bnd.find('ymin')obj_xmax = obj_bnd.find('xmax')obj_ymax = obj_bnd.find('ymax')#以防有负值坐标xmin = max(float(obj_xmin.text),0)ymin = max(float(obj_ymin.text),0)xmax = max(float(obj_xmax.text),0)ymax = max(float(obj_ymax.text),0)obj_bnd.remove(obj_xmin)  # 删除节点obj_bnd.remove(obj_ymin)obj_bnd.remove(obj_xmax)obj_bnd.remove(obj_ymax)x0.text = str(xmin)y0.text = str(ymax)x1.text = str(xmax)y1.text = str(ymax)x2.text = str(xmax)y2.text = str(ymin)x3.text = str(xmin)y3.text = str(ymin)else:obj_bnd = obj.find('robndbox')obj_bnd.tag = 'bndbox'  # 修改节点名obj_cx = obj_bnd.find('cx')obj_cy = obj_bnd.find('cy')obj_w = obj_bnd.find('w')obj_h = obj_bnd.find('h')obj_angle = obj_bnd.find('angle')cx = float(obj_cx.text)cy = float(obj_cy.text)w = float(obj_w.text)h = float(obj_h.text)angle = float(obj_angle.text)obj_bnd.remove(obj_cx)  # 删除节点obj_bnd.remove(obj_cy)obj_bnd.remove(obj_w)obj_bnd.remove(obj_h)obj_bnd.remove(obj_angle)x0.text, y0.text = rotatePoint(cx, cy, cx - w / 2, cy - h / 2, -angle)x1.text, y1.text = rotatePoint(cx, cy, cx + w / 2, cy - h / 2, -angle)x2.text, y2.text = rotatePoint(cx, cy, cx + w / 2, cy + h / 2, -angle)x3.text, y3.text = rotatePoint(cx, cy, cx - w / 2, cy + h / 2, -angle)# obj.remove(obj_type)  # 删除节点obj_bnd.append(x0)  # 新增节点obj_bnd.append(y0)obj_bnd.append(x1)obj_bnd.append(y1)obj_bnd.append(x2)obj_bnd.append(y2)obj_bnd.append(x3)obj_bnd.append(y3)tree.write(dotaxml_file, method='xml', encoding='utf-8')  # 更新xml文件# 转换成四点坐标
def rotatePoint(xc, yc, xp, yp, theta):xoff = xp - xc;yoff = yp - yc;cosTheta = math.cos(theta)sinTheta = math.sin(theta)pResx = cosTheta * xoff + sinTheta * yoffpResy = - sinTheta * xoff + cosTheta * yoffreturn str(int(xc + pResx)), str(int(yc + pResy))def totxt(xml_path, out_path):# 想要生成的txt文件保存的路径,这里可以自己修改files = os.listdir(xml_path)i=0for file in files:tree = ET.parse(xml_path + os.sep + file)root = tree.getroot()name = file.split('.')[0]output = out_path +'\\'+name + '.txt'file = open(output, 'w')i=i+1objs = tree.findall('object')for obj in objs:cls = obj.find('name').textbox = obj.find('bndbox')x0 = int(float(box.find('x0').text))y0 = int(float(box.find('y0').text))x1 = int(float(box.find('x1').text))y1 = int(float(box.find('y1').text))x2 = int(float(box.find('x2').text))y2 = int(float(box.find('y2').text))x3 = int(float(box.find('x3').text))y3 = int(float(box.find('y3').text))if x0<0:x0=0if x1<0:x1=0if x2<0:x2=0if x3<0:x3=0if y0<0:y0=0if y1<0:y1=0if y2<0:y2=0if y3<0:y3=0for cls_index,cls_name in enumerate(cls_list):if cls==cls_name:file.write("{} {} {} {} {} {} {} {} {} {}\n".format(x0, y0, x1, y1, x2, y2, x3, y3, cls,cls_index))file.close()# print(output)print(i)if __name__ == '__main__':# -----**** 第一步:把xml文件统一转换成旋转框的xml文件 ****-----roxml_path = 'data_mouse_ro_1/org_xml' dotaxml_path = 'data_mouse_ro_1/dotaxml'  out_path = 'data_mouse_ro_1/dotatxt'   filelist = os.listdir(roxml_path)for file in filelist:edit_xml(os.path.join(roxml_path, file), os.path.join(dotaxml_path, file))# -----**** 第二步:把旋转框xml文件转换成txt格式 ****-----totxt(dotaxml_path, out_path)

2.2 dota_to_yolo_obb

dota数据格式:937.0 913.0 921.0 912.0 923.0 874.0 940.0 875.0 small-vehicle 0

yolo_obb格式:class_index, x1, y1, x2, y2, x3, y3, x4, y4

sys.path.append('/path/to/ultralytics')
from ultralytics.data.converter import convert_dota_to_yolo_obb
convert_dota_to_yolo_obb('/home/fut/project/ultralytics-main/ultralytics/datasets_ro')

跳转到convert_dota_to_yolo_obb.py函数,对class_mapping进行修改 

2.3 分割数据集

数据集文件分布格式如下:

datasets--images--train--val--labelTxt--trian--val

分割代码:

import os
import random
import shutil# 设置随机数种子
random.seed(42)# 数据集文件夹路径和输出文件夹路径
data_folder = 'data_mouse_ro_1'
img_folder = 'data_mouse_ro_1/dataset/images'
label_folder = 'data_mouse_ro_1/dataset/labels'# 计算每个子集的大小
total_files = len(os.listdir(os.path.join(data_folder, 'img')))
train_size = int(total_files * 0.9)
test_size = int(total_files - train_size)# 获取所有图像文件的文件名列表
image_files = os.listdir(os.path.join(data_folder, 'img'))
random.shuffle(image_files)# 复制图像和标注文件到相应的子集文件夹中
for i, image_file in enumerate(image_files):base_file_name = os.path.splitext(image_file)[0]image_path = os.path.join(data_folder, 'img', image_file)label_path = os.path.join(data_folder, 'dotatxt', base_file_name + '.txt')if i < train_size:print(image_path)#print(os.path.join(img_folder, 'train'))shutil.copy(image_path, os.path.join(img_folder, 'train'))shutil.copy(label_path, os.path.join(label_folder, 'train_original'))else:shutil.copy(image_path, os.path.join(img_folder, 'val'))shutil.copy(label_path, os.path.join(label_folder, 'val_original'))

二.开始训练

(1)下载预训练权重
(2)创建dota8-obb.yaml,修改相关参数
(3)修改yolov8-obb.yaml参数,修改nc
(4)训练

from ultralytics import YOLOdef main():model = YOLO('yolov8n-obb.yaml').load('yolov8n-obb.pt')  # build from YAML and transfer weightsmodel.train(data='dota8-obb.yaml', epochs=100, imgsz=640, batch=4, workers=4)
if __name__ == '__main__':main()

参考:

全网首发!Yolov8_obb旋转框训练、测试、推理手把手教学(DOTA1.0数据集map50已达80%)

Yolov8_obb(prob loss) 基于anchor_free的旋转框目标检测,剪枝,跟踪(ByteTracker)

YOLOv8-OBB推理详解及部署实现

roLabelImg的使用

关于旋转框定义的一些理解和感想

 

这篇关于记录yolov8_obb训练自己的数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636926

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

docker编写java的jar完整步骤记录

《docker编写java的jar完整步骤记录》在平常的开发工作中,我们经常需要部署项目,开发测试完成后,最关键的一步就是部署,:本文主要介绍docker编写java的jar的相关资料,文中通过代... 目录all-docker/生成Docker打包部署文件配置服务A的Dockerfile (a/Docke

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

MySQL使用EXISTS检查记录是否存在的详细过程

《MySQL使用EXISTS检查记录是否存在的详细过程》EXISTS是SQL中用于检查子查询是否返回至少一条记录的运算符,它通常用于测试是否存在满足特定条件的记录,从而在主查询中进行相应操作,本文给大... 目录基本语法示例数据库和表结构1. 使用 EXISTS 在 SELECT 语句中2. 使用 EXIS

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性