Nature 重磅 | 光合作用可增强哺乳动物细胞合成代谢功能 - MedChemExpress

本文主要是介绍Nature 重磅 | 光合作用可增强哺乳动物细胞合成代谢功能 - MedChemExpress,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

细胞合成代谢的关键物质

细胞内合成代谢不足 (表征为细胞内 ATP 和 NADPH 缺乏) 是参与体内许多病理过程的关键因素。细胞内物质的合成代谢需要消耗足够的 ATP,并依赖 NADPH (还原型辅酶 Ⅱ) 为合成代谢提供还原能量的关键电子供体。

三羧酸 (TCA) 循环是大多数哺乳动物细胞中产生 ATP 的主要能量代谢过程。然而,针对 TCA 循环的干预措施并不能纠正病理条件下 ATP 供应失调的情况。TCA 循环涉及各种代谢网络,仅通过递送特定因子以改变其固有途径可能会导致细胞死亡,并且,直接提供外源性 ATP 对细胞代谢影响不大。

NADPH 可以为合成反应和氧化还原平衡提供还原力。细胞 NADPH 水平通过多种代谢途径 (磷酸戊糖途径、脂肪酸氧化和谷氨酰胺代谢) 的产生和利用来调节。然而,直接干预这些途径可能导致细胞代谢失衡,不可控的 NADPH 供应会导致超氧化物的产生,从而又造成氧化应激。此外,NADPH 也很昂贵。

简言之,在病理条件下,很难将不足的 ATP 和 NADPH 水平增加至最佳浓度。因此,构建一个可控并且独立的 ATP 和 NADPH 自我供应系统,对增强细胞合成代谢来说尤为重要。

基于 NTUs 的植物源天然光合系统

今年 12 月 7 日,Nature 在线发表了名为 “A plant-derived natural photosynthetic system for improving cell anabolism” 的研究性论文。该研究开发了一种独立且可控的、基于纳米类囊体单元 (NTUs) 的植物源天然光合系统。将NTUs 用软骨细胞膜 (CM) 包装后递送入软骨细胞内,CM-NTUs 在暴露于光后原位增加细胞内 ATP 和 NADPH 水平,并改善退化软骨细胞的合成代谢。它们还可以系统地纠正能量失衡,改善了小鼠软骨稳态并防止骨关节炎的病理进展。该天然光合系统成功实现了跨物种应用,能有效增强哺乳动物细胞的合成代谢功能,并在治疗退行性疾病方面表现出良好的临床潜力。

NTUs 生产 ATP 和 NADPH

作者团队首先对 NTUs 进行分析。蛋白质组学结果显示,NTUs 保留了类囊体膜表面光合作用所需的所有蛋白质组分 (图 1a)。基因本体 (GO) 细胞组分分析表明,NTUs 能在光照后催化 ADP 产生ATP,并催化依赖于光的 NADP+ 还原为 NADPH (图 1b)。为验证上述结果,作者测量了分离的 NTUs 中 D1 和 D2 蛋白随时间推移的丰度变化。如图 1c 所示,D1 和 D2 蛋白,在光照下 (8-16 小时内) 完全降解,在黑暗条件下 (5-7 天内) 几乎完全降解。

小贴士:D1 和 D2 蛋白是植物光合作用重要复合体 PSII 的核心亚基蛋白,能够进行光合作用。

随后测量了 NTUs 的 ATP 生产能力随时间的变化。结果表明,NTUs 产生 ATP 的能力在光照 16 小时后或在黑暗中储存 7 天后显著下降 (图 1d-e)。简言之,在光照和黑暗条件下 NTUs 产生 ATP 能力的变化与蛋白质降解变化水平一致

图 1. NTUs 的表征

a. NTUs 中光合作用光反应相关蛋白质和光合作用电子传递链的示意图。FD: 铁氧还蛋白;PC: 质体蓝素;PSI: 光系统I;PSII: 光系统II;PQ: 质体醌。b. NTUs 体外生产ATP和NADPH 的能力。c. 在光照 0-32 小时 (光强度 80 µmol·m-2·s-1) 或黑暗 0-7 天 (室温) 条件下,NTUs 中 D1 和 D2 的丰度。d-e. 测定 NTUs 的ATP产量 (d) 在光照下 (光强度 80 µmol·m-2·s-1) 0-32小时; (e) 黑暗 0-7 天 (室温)。

如何跨物种应用 NTUs?

NTUs 虽能生产 ATP 和 NADPH,但如何有效避免哺乳动物细胞的体内清除和免疫排斥呢?作者认为使用特定的成熟细胞膜作为伪装,可能是将光合系统植入并逃避跨物种清除的有效策略。

因此,该研究使用软骨细胞膜 (chondrocyte membrane, CM) 来封装 NTUs,以制备 CM-NTUs。结果表明,这些 CM-NTUs 可通过膜融合进入软骨细胞,避免溶酶体降解并实现快速渗透 (图 2)

小贴士:骨关节炎 (Osteoarthritis) 是一种常见的退行性疾病,由于软骨细胞的能量代谢失衡导致关节软骨破坏。病理性软骨细胞表现出 ATP 和 NADPH 耗竭,以及活性氧 (ROS) 和细胞外基质 (ECM) 降解相关蛋白的产生增加。目前骨关节炎的生物治疗还无法系统性地纠正损伤退变软骨细胞的代谢失衡。

图 2. 包膜纳米类囊体单位 (CM-NTUs) 示意图

CM-NTUs 可改善细胞的合成代谢

  • CM-NTUs 的使用优化

作者首先在不同的光照条件下,将 IL-1β 处理 (诱导小鼠软骨细胞的代谢障碍) 的软骨细胞与 CM-NTUs 共孵育,以跟踪细胞 ATP 和 NADPH 随时间的变化。然后,调整光强度、光照时间和 CM-NTUs 中封装的铁氧还蛋白 (FDX) 浓度,以优化实验条件。结果显示,暴露于红光 (80 µmol·m-2·s-1) 照射 30 分钟并具有 25 µM FDX (递送至细胞后稀释至约 1.2 µM) 的 CM-NTUs,是佳实验条件,并将其用于后续实验。在这些条件下,CM-NTUs 恢复了细胞内 ATP 和 NADPH 水平,接近对照软骨细胞中的水平 (图 3a-c)

小贴士:铁氧还蛋白作为一种常见的电子载体,参与呼吸作用、光合作用、发酵等重要代谢过程。

图 3. CM-NTUs 在不同条件下恢复软骨细胞内的 ATP、NADPH 水平

a, 用 CM-NTUs 和红光照射 (80 µmol·m-2·s-1) 处理不同时间的软骨细胞 ATP 水平。b. 在不同光强度下,用 CM-NTUs 和红光照射处理 30 min 的软骨细胞 ATP 水平。c. 用具有不同包封铁氧还蛋白 (FDX) 浓度的 CM-NTUs 处理的软骨细胞的 NADPH 水平。

  • NTUs 的使用寿命

通过测量光照和非光照细胞中 ATP 和 NADPH 水平随时间的变化,以阐明细胞中 NTUs 的功能寿命 (图 4)

受光照的细胞中,ATP 和 NADPH 水平逐渐增加,在 1-2 小时达到峰值,然后由于细胞内 ADP 和 NADP+ 库的耗尽而达到稳定水平。8 h 后,ATP 和 NADPH 水平开始下降。到 32 小时,ATP 和 NADPH 水平与在非光照细胞中观察到的相似。在非光照细胞中,CM-NTUs 对细胞 ATP 水平没有影响

小贴士:NADP+ 和 ADP 在光反应中可被还原成 NADPH 和 ATP。

研究结果还表明,由光合系统产生的 ROS 并没有增加细胞内 ROS 总水平。此外,在含有 NTU 并经光照的退行性软骨细胞中,细胞内 ROS 水平下降

图 4. 用 CM-NTU 培养的细胞 (有/无光照) 中 ATP (a) 和 NADPH (b) 水平随时间的变化

  • NTUs 对其他退行性疾病有效

为探索 NTUs 对其他退行性疾病的作用效果,该研究使用各种膜包覆的 NTU,并将其与相应的细胞 (肌肉卫星细胞、髓核细胞、人脐静脉内皮细胞) 进行培养。

结果显示,光照组 ATP 和 NADPH 的浓度分别比未光照组增加 3.17-3.78 和 1.37-1.40 倍 (图 5)。也即,光照后,上述细胞中的 ATP 和 NADPH 水平都得到增强。换言之,包裹成熟哺乳动物膜的 NTU 在暴露于光照后,能增强细胞的合成代谢功能 (不局限于软骨细胞)

图 5. 包裹不同哺乳动物细胞膜的 NTUs 在相应的细胞中的所产生的 ATP (a, c, e) 和 NADPH (b, d, f) 水平。 肌肉卫星细胞 (SCs)、髓核细胞 (NPCs) 和人脐静脉内皮细胞 (HUVECs)。

综上所述, NTU 可通过自然光合系统,有效改善细胞的合成代谢功能。

CM-NTU 重新规划细胞合成代谢程序

为全面确定细胞代谢的变化,该研究对暴露在光线下的软骨细胞进行转录组学分析。作者比较了 IL-1β + CM-NTU 组和 IL-1β 组的基因表达模式。结果显示,IL-1β + CM-NTU 组表现出参与 TCA 循环和氧化磷酸化的基因表达上调,以及参与糖酵解和细胞外基质 (ECM) 降解的基因表达下调 (图 6a)。换言之,CM-NTU 重新驱动的代谢过程可系统地纠正退化软骨细胞中能量 (糖酵解、TCA 循环和氧化磷酸化) 和物质 (胶原蛋白和糖胺聚糖) 代谢的失衡 (图 6b)。小贴士:细胞外基质 (ECM) 主要由胶原蛋白和糖胺聚糖组成,骨关节炎时难以再生。

图 6. CM-NTU 重新规划细胞合成代谢程序

a. 雷达图显示了 IL-1β 组和 IL-1β + CM-NTU 组中糖酵解、TCA循环、氧化磷酸化、氨基糖代谢、甘氨酸和丝氨酸代谢以及精氨酸、鸟氨酸和脯氨酸代谢的途径富集分数。b. 退化软骨细胞中 CM-NTU 重驱动的代谢过程示意图。

CM-NTU 对骨关节炎小鼠模型有效

最后,该研究通过关节内注射 CM-NTUs 并进行光照,以评价其是否能抑制小鼠前交叉韧带横断 (ACLT) 手术诱导的骨关节炎的进展。结果显示,CM-NTUs 在光照后增加原位软骨细胞内的 ATP 和 NADPH 水平,从而使胶原蛋白 (Col II) 和聚集蛋白聚糖含量增加,并在术后 12 周,有效抑制了软骨下骨变形和骨赘的增生 (图 7)。简言之,CM-NTUs 可以促进软骨稳态,并防止动物骨关节炎的发生。

图 7. 骨关节炎小鼠模型注射 CM-NTUs 后的关节变化术后 12 周时,关节切片的免疫组织化学染色 (Col II 和聚集蛋白聚糖) 以及膝关节显微 CT 图像的矢状面图 (第 3 行) 和膝关节的三维图像 (第 4 行)。

总结

作者构建了一个完全自然的光合系统,可以基于光照独立促进细胞中 ATP 和 NADPH 的供应。最重要的是,该项研究利用膜包覆策略,证明了植物源性天然光合系统的跨物种移植的可行性和适用性,这为退行性疾病的治疗打下坚实的基础。

参考文献

1. Chen P, et al. A plant-derived natural photosynthetic system for improving cell anabolism. Nature. 2022 Dec;612(7940):546-554.

这篇关于Nature 重磅 | 光合作用可增强哺乳动物细胞合成代谢功能 - MedChemExpress的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636657

相关文章

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②

C#实现高性能拍照与水印添加功能完整方案

《C#实现高性能拍照与水印添加功能完整方案》在工业检测、质量追溯等应用场景中,经常需要对产品进行拍照并添加相关信息水印,本文将详细介绍如何使用C#实现一个高性能的拍照和水印添加功能,包含完整的代码实现... 目录1. 概述2. 功能架构设计3. 核心代码实现python3.1 主拍照方法3.2 安全HBIT

录音功能在哪里? 电脑手机等设备打开录音功能的技巧

《录音功能在哪里?电脑手机等设备打开录音功能的技巧》很多时候我们需要使用录音功能,电脑和手机这些常用设备怎么使用录音功能呢?下面我们就来看看详细的教程... 我们在会议讨论、采访记录、课堂学习、灵感创作、法律取证、重要对话时,都可能有录音需求,便于留存关键信息。下面分享一下如何在电脑端和手机端上找到录音功能

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

基于Java和FFmpeg实现视频压缩和剪辑功能

《基于Java和FFmpeg实现视频压缩和剪辑功能》在视频处理开发中,压缩和剪辑是常见的需求,本文将介绍如何使用Java结合FFmpeg实现视频压缩和剪辑功能,同时去除数据库操作,仅专注于视频处理,需... 目录引言1. 环境准备1.1 项目依赖1.2 安装 FFmpeg2. 视频压缩功能实现2.1 主要功

使用Python实现无损放大图片功能

《使用Python实现无损放大图片功能》本文介绍了如何使用Python的Pillow库进行无损图片放大,区分了JPEG和PNG格式在放大过程中的特点,并给出了示例代码,JPEG格式可能受压缩影响,需先... 目录一、什么是无损放大?二、实现方法步骤1:读取图片步骤2:无损放大图片步骤3:保存图片三、示php

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?