《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机

2024-01-23 13:44

本文主要是介绍《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 第 2章感知机
    • 2.1 感知机模型
    • 2.2 感知机学习策略
      • 2.2.1 数据集的线性可分性
      • 2.2.2 感知机学习策略
    • 2.3 感知机学习算法
      • 2.3.1 感知机学习算法的原始形式
      • 2.3.2 算法的收敛性
      • 2.3.3 感知机学习算法的对偶形式
    • 实践:二分类模型(iris数据集)
      • 数据集可视化:
      • Perceptron
      • scikit-learn实例

《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机
《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第1章 统计学习方法概论

我算是有点基础的(有过深度学习和机器学的项目经验),但也是半路出家,无论是学Python还是深度学习,都是从问题出发,边查边做,没有系统的学过相关的知识,这样的好处是入门快(如果想快速入门,大家也可以试试,直接上手项目,从小项目开始),但也存在一个严重的问题就是,很多东西一知半解,容易走进死胡同出不来(感觉有点像陷入局部最优解,找不到出路),所以打算系统的学习几本口碑比较不错的书籍。
  书籍选择: 当然,机器学习相关的书籍有很多,很多英文版的神书,据说读英文版的书会更好,奈何英文不太好,比较难啃。国内也有很多书,周志华老师的“西瓜书”我也有了解过,看了前几章,个人感觉他肯能对初学者更友好一点,讲述的非常清楚,有很多描述性的内容。对比下来,更喜欢《统计学习方法》,毕竟能坚持看完才最重要。
  笔记内容: 笔记内容尽量省去了公式推导的部分,一方面latex编辑太费时间了,另一方面,我觉得公式一定要自己推到一边才有用(最好是手写)。尽量保留所有标题,但内容会有删减,通过标黑和列表的形式突出重点内容,要特意说一下,标灰的部分大家最好读一下(这部分是我觉得比较繁琐,但又不想删掉的部分)。
  代码实现: 最后是本章内容的实践,如果想要对应的.ipynb文件,可以留言

第 2章感知机

  感知机 (perceptron) 是二类分类的线性分类模型,其输入为实例的特征向量,输 出为实例的类别,取 +1 和-1 二值。

  感知机对应于输入空间(特征空间)中将实例划 分为正负两类的分离超平面,属于判别模型

  感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此:

  • 导入基于误分类的损失函数,
  • 利用梯度下降法对损失函 数进行极小化,求得感知机模型。

  感知机学习算法具有简单而易于实现的优点,分为 原始形式对偶形式。

2.1 感知机模型

  感知机是一种线性分类模型,属于判别模型。

  感知机模型的假设空间是定义在特征空间中的所有线性分类模型(linear classification modeD 或线性分类器 (linear classifier) ,即函数集合

f ∣ f ( x ) = ω • x + b {{f|f(x) = ω • x + b}} ff(x)=ωx+b

几何解释:线性方程

ω ⋅ x + b = 0 ω\cdot x+b=0 ωx+b=0

  对应于特征空间 R n R^n Rn 中的一个超平面 S , 其中 ω超平面的法向量b超平面的截距

  这个超平面将特征空间划分为两个部分。位于两部分的点(特征向量)分别被分为 正、负两类。因此,超平面 S称为分离超平面 (separating hyperplane) ,如图 2.1 所示。

2.2 感知机学习策略

2.2.1 数据集的线性可分性

  给定一个数据集T:

T = ( x l , y 1 ) , ( x 2 , y 2 ) , … , ( x n , y n ) T = {(x_l ,y_1), (x_2 ,y_2) ,… , (x_n,y_n)} T=(xl,y1),(x2,y2),,(xn,yn)

  其中 , x i ∈ X = R n , y i ∈ Y = ( + 1 , − 1 ) , i = 1 , 2 , … , n x_i \in X = R^n, y_i \in Y=(+1 ,-1) , i= 1 , 2,… , n xiX=Rn,yiY=(+1,1)i=12n

  如果存在某个超乎面 S

ω ⋅ x + b = 0 ω\cdot x+b=0 ωx+b=0

  能够将数据集的正实例点和负实例点完全正确地划分到超平面的两侧,则称数据集 T 为线性可分数据集( linearly separable data set ) ;否则,称数据集 T 线性不可分

2.2.2 感知机学习策略

  假设训练数据集是线性可分的,感知机学习的目标是求得一个能够将训练集正实例点和负实例点完全正确分开分离超平面
在这里插入图片描述

  损失函数的一个自然选择是误分类点的总数。但是,这样的损失函数不是连续可导函数,不易优化。损失函数的另一个选择是误分类点到超平面 S 的总距离

  • 输入空间 R n R^n Rn 中任一 x o x_o xo 到超平面 S S S 的 距离:

1 ∣ ∣ w ∣ ∣ ∣ w ⋅ x 0 + b ∣ \frac{1}{||w||}|w \cdot x_0+b| ∣∣w∣∣1wx0+b

  • 对于误分类的数据 ( x i , x i ) (x_i,x_i) (xi,xi) 来说,

− y i ( ω ⋅ x i + b ) > O -y_i(ω \cdot x_i+b)>O yi(ωxi+b)>O

  • ω • x i + b > 0 ω • x_i + b > 0 ωxi+b>0 时 , y i = − 1 y_i = -1 yi=1
  • ω • x i + b < 0 ω • x_i + b < 0 ωxi+b<0 时, x i = + 1 x_i = +1 xi=+1
  • 所有误分类点超平面 S总 距离

− 1 ∣ ∣ w ∣ ∣ ∑ x i ∈ M y i ( w ⋅ x 0 + b ) -\frac{1}{||w||}\sum_{x_i\in M}y_i(w \cdot x_0+b) ∣∣w∣∣1xiMyi(wx0+b)

  感知机 s i g n ( w • x + b ) sign(w • x + b) sign(wx+b) 学习的损失函数定义为:

L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x 0 + b ) L(w,b)=-\sum_{x_i\in M}y_i(w \cdot x_0+b) L(w,b)=xiMyi(wx0+b)

  其中 M 为误分类点的集合。

  这个损失函数就是感知机学习的经验风险函数。

2.3 感知机学习算法

  感知机学习问题转化为求解损失函数式的最优化问题,最优化的方法是随 机梯度下降法。

2.3.1 感知机学习算法的原始形式

求参数 w , b w, b wb , 使其为以下损失函数极小化问题的解:

m i n w , b L ( w , b ) = − ∑ x i ∈ M y i ( w ⋅ x i + b ) min_{w,b}L(w,b)=-\sum_{x_i\in M}y_i(w \cdot x_i+b) minw,bL(w,b)=xiMyi(wxi+b)

  其中 M 为误分类点的集合。

求解思路:

  • 感知机学习算法是误分类驱动的,具体采用随机梯度下降法 (stochastic gradient descent)。
  • 首先,任意选取一个超平面 w 0 , b 0 w_0,b_0 w0,b0 , 然后用梯度下降法不断地极小化目标函数(损失函数)
  • 极小化过程中不是一次使M 中所有误分类点的梯度下降,而是一次随机 选取一个误分类点使其梯度下降
  • 假设误分类点集合 M 是固定的,那么损失函数 L ( w , b ) L(w,b) L(w,b)梯度由下式给出:

∇ w L ( w , b ) = − ∑ x i ∈ M y i x i \nabla_w L(w,b)=-\sum_{x_i\in M}{y_ix_i} wL(w,b)=xiMyixi

∇ b L ( w , b ) = − ∑ x i ∈ M y i \nabla _b L(w,b)=-\sum_{x_i\in M}{y_i} bL(w,b)=xiMyi

  • 随机选取一个误分类点 ( x i , y i ) (x_i,y_i) xi,yi ω , b ω, b ωb 进行更新:

w ← w + η y i x i w\leftarrow w+ηy_ix_i ww+ηyixi

b ← b + η y i b \leftarrow b+ηy_i bb+ηyi

  式中 η ( 0 < η ≤ 1 ) η(0 <η\leq1) η(0<η1) 是步长,在统计学习中又称为学习率(learning rate) 。

在这里插入图片描述

  这种学习算法直观上有如下解释:

  当一个实例点被误分类,即位于分离超平面的 错误一侧时,则调整 ω, b 的值,使分离超平面向该误分类点的一侧移动,以减少该误分类点与超平面间的距离,直至超平面越过该误分类点使其被正确分类。

2.3.2 算法的收敛性

在这里插入图片描述

  定理表明,误分类的次数 k 是有上界的,经过有限次搜索可以找到将训练数据完 全正确分开的分离超平面。也就是说,当训练数据集线性可分时,感知机学习算法原 始形式迭代是收敛的。

2.3.3 感知机学习算法的对偶形式

  对偶形式的基本想法是,将 ω ω ω b b b 表示为实例 x i x_i xi标记 y i y_i yi线性组合的形式, 通过求解其系数而求得 ω ω ω b b b

在这里插入图片描述

  对偶形式中训练实例仅以内积的形式出现。

  为了方便,可以预先将训练集中实例间的内积计算出来并以矩阵的形式存储,这个矩阵就是所谓的 Gram 矩阵 (Gram matrix):
G = [ x i ⋅ x i ] N × N G=[x_i \cdot x_i]_{N \times N} G=[xixi]N×N

实践:二分类模型(iris数据集)

import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
%matplotlib inline
#load data
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
df.label.value_counts()
=========================
2    50
1    50
0    50
Name: label, dtype: int64

数据集可视化:

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

data = np.array(df.iloc[:100, [0, 1, -1]])
X, y = data[:,:-1], data[:,-1]
y = np.array([1 if i == 1 else -1 for i in y])

Perceptron

# 数据线性可分,二分类数据
# 此处为一元一次线性方程
class Model:def __init__(self):self.w = np.ones(len(data[0]) - 1, dtype=np.float32)self.b = 0self.l_rate = 0.1# self.data = datadef sign(self, x, w, b):y = np.dot(x, w) + breturn y# 随机梯度下降法def fit(self, X_train, y_train):is_wrong = Falsewhile not is_wrong:wrong_count = 0for d in range(len(X_train)):X = X_train[d]y = y_train[d]if y * self.sign(X, self.w, self.b) <= 0:self.w = self.w + self.l_rate * np.dot(y, X)self.b = self.b + self.l_rate * ywrong_count += 1if wrong_count == 0:is_wrong = Truereturn 'Perceptron Model!'def score(self):pass

训练

perceptron = Model()
perceptron.fit(X, y)
===============================
'Perceptron Model!'

分类&可视化

x_points = np.linspace(4, 7, 10)
y_ = -(perceptron.w[0] * x_points + perceptron.b) / perceptron.w[1]
plt.plot(x_points, y_)plt.plot(data[:50, 0], data[:50, 1], 'bo', color='blue', label='0')
plt.plot(data[50:100, 0], data[50:100, 1], 'bo', color='orange', label='1')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

scikit-learn实例

import sklearn
from sklearn.linear_model import Perceptron
===============
sklearn.__version__
'0.21.2'
clf = Perceptron(fit_intercept=True, max_iter=1000, shuffle=True)
clf.fit(X, y)
=================================
Perceptron(alpha=0.0001, class_weight=None, early_stopping=False, eta0=1.0,fit_intercept=True, max_iter=1000, n_iter_no_change=5, n_jobs=None,penalty=None, random_state=0, shuffle=True, tol=0.001,validation_fraction=0.1, verbose=0, warm_start=False)
# Weights assigned to the features.
print(clf.coef_)
===============================
[[ 23.2 -38.7]]
# 截距 Constants in decision function.
print(clf.intercept_)
================================
[-5.]

可视化

# 画布大小
plt.figure(figsize=(10,10))# 中文标题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('鸢尾花线性数据示例')plt.scatter(data[:50, 0], data[:50, 1], c='b', label='Iris-setosa',)
plt.scatter(data[50:100, 0], data[50:100, 1], c='orange', label='Iris-versicolor')# 画感知机的线
x_ponits = np.arange(4, 8)
y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]
plt.plot(x_ponits, y_)# 其他部分
plt.legend()  # 显示图例
plt.grid(False)  # 不显示网格
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

注意 !

在上图中,有一个位于左下角的蓝点没有被正确分类,这是因为 SKlearn 的 Perceptron 实例中有一个tol参数。

tol 参数规定了如果本次迭代的损失和上次迭代的损失之差小于一个特定值时,停止迭代。所以我们需要设置 tol=None 使之可以继续迭代:

clf = Perceptron(fit_intercept=True, max_iter=1000,tol=None,shuffle=True)
clf.fit(X, y)# 画布大小
plt.figure(figsize=(10,10))# 中文标题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.title('鸢尾花线性数据示例')plt.scatter(data[:50, 0], data[:50, 1], c='b', label='Iris-setosa',)
plt.scatter(data[50:100, 0], data[50:100, 1], c='orange', label='Iris-versicolor')# 画感知机的线
x_ponits = np.arange(4, 8)
y_ = -(clf.coef_[0][0]*x_ponits + clf.intercept_)/clf.coef_[0][1]
plt.plot(x_ponits, y_)# 其他部分
plt.legend()  # 显示图例
plt.grid(False)  # 不显示网格
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()

在这里插入图片描述

现在可以看到,所有的两种鸢尾花都被正确分类了。

这篇关于《统计学习方法:李航》笔记 从原理到实现(基于python)-- 第 2章感知机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636583

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright