大数据权限授权管理框架:Apache Sentry和Ranger

2024-01-23 11:40

本文主要是介绍大数据权限授权管理框架:Apache Sentry和Ranger,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • Sentry和Ranger的概述
  • Sentry
    • Sentry的架构模型
    • Sentry与Hadoop生态圈组件的集成
  • Ranger
    • Ranger的架构模型
    • Ranger的策略配置
      • 对于用户的ACL控制
      • 表的行过滤及列处理
    • Ranger的Policy的灵活性
  • 引用

前言


上篇文章后半部分提到了业界流行的大数据权限管理框架Apache Sentry和Ranger。二者在功能上具有很高的相似性,但是在具体细节上上篇文章阐述的还不够细致。本文笔者来深入浅出地聊聊这两个框架,以及它们的少许异同点。熟悉掌握使用外部权限管理框架,并且将它们合理地应用于自身内部大数据组件系统内,无疑将会大大提高内部组件使用的安全性。

Sentry和Ranger的概述


从最源头开始说起这2个项目,Sentry首先是由Cloudera公司内部开发而来的,初衷是为了让用户能够细粒度的控制Hadoop系统中的数据(这里主要指HDFS,Hive的数据)。所以Sentry对HDFS,Hive以及同样由Cloudera开发的Impala有着很好的支持性。

而Ranger则是由于另一家公司Hortonworks所主导。它同样是做细粒度的权限控制。但相比较于Sentry而言,它能支持更丰富的组件,包括于 HDFS, Hive, HBase, Yarn, Storm, Knox, Kafka, Solr and NiFi。

这两个框架在权限管理时都有运用到基于角色的访问控制原理(role-based access control,RBAC)。换句话说,当新来一个用户时,我们赋予它的是一个身份角色,然后这个用户的执行权限操作完全由统一的角色本身所允许的一些权限。基于角色的访问控制,能够大大减轻系统对于大数据量用户的直接ACL控制。

下面我们来细聊着两大组件的内容。

Sentry


Sentry的架构模型


上文提到过,Sentry在最初发展阶段只是对部分组件支持的比较好,没有像Ranger支持的那么多。

首先,我们来看Sentry的整体架构

在这里插入图片描述

DataEngine指的是具体的数据应用程序,这里指的是HDFS,Hive和Impala。
Plugin,Plugin程序负责和Sentry Server通信,做权限策略信息的同步。同时在Plugin程序中,包含了认证引擎模块,来做权限的验证操作。
Policy metadata,这里的matadata存储权限策略数据,对应的会需要一个外部存储db。

从另一个角度层面来看Sentry的内部结构

在这里插入图片描述

Sentry与Hadoop生态圈组件的集成


Sentry与Hive,HDFS,Impala等组件集成的较好, 结构图如下图所示:

在这里插入图片描述

从上图中,我们注意到一个细节,在HDFS里面多了一个cache层,这个是用来干嘛的呢?其实为了保持HDFS的权限与HIve的一致,NameNode的Sentry Plugin程序会定期拉取Hive的Metadata信息以及Sentry Server上的权限信息,并cache起来。这可以说也是为了性能考虑了。

另外地在Sentry Sever中,它还有audit模块,记录了所有模块的请求访问记录。

Ranger


Ranger相比较于Sentry来说,它的功能可以说更加具有通用性。这里说的通用性在于以下两点:

  • 上层支持的应用组件更多
  • 对于控制的资源的类型更多

第一点,前文已经提到过,第二点这里的资源就不仅仅只有文件和目录了这种了,它还可以有表,行以及列的访问控制。这些都是体现在Ranger的策略信息里面的。

Ranger的架构模型


以下是Ranger的架构模型,和Sentry有类似之处。
在这里插入图片描述

对于具体的策略控制,由用户通过admin web ui页面进行配置。

Ranger的策略配置


对于用户的ACL控制


我们先来看最简单的,对于用户的访问控制,我们可以设置用户对于选定的路径有哪些权限,策略细节如下:

在这里插入图片描述

配置此策略信息后,系统会对这些用户做额外判断处理。

表的行过滤及列处理


小标题这里我们指的是对Hive的表数据。假设我们有一以下Hive表。

Table: customer
+----+------------+-----------+--------------+---------------+----------------+
| id | name_first | name_last | addr_country | date_of_birth | phone_num      |
+----+------------+-----------+--------------+---------------+----------------+
|  1 | Mackenzy   | Smith     | US           | 1993-12-18    | 123-456-7890   |
|  2 | Sherlyn    | Miller    | US           | 1975-

这篇关于大数据权限授权管理框架:Apache Sentry和Ranger的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636290

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读