【代码整理】COCO格式数据集画框

2024-01-23 08:28

本文主要是介绍【代码整理】COCO格式数据集画框,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

可以用于排查数据集转化后可能出现的坐标错误,类别不对齐等需要可视化才能发现的问题

import部分

from pycocotools.coco import COCO
import numpy as np
import os
from PIL import Image
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
import matplotlib.pyplot as plt

VisCOCOBox

class VisCOCOBox:def visCOCOGTBoxPerImg(self, coco, image2color, anns):'''可视化COCO数据集下一张图像的所有GTBoxesArgs::param coco:        COCO数据集实例:param image2color: 每个类别的颜色:param anns:        当前图像对应的GTBoxes信息Retuens:None'''# 获取当前正在使用的坐标轴对象"get current axis"(这里就是图像的坐标轴)ax = plt.gca()# 关闭plt的坐标轴自动缩放功能:# ax.set_autoscale_on(False)# polygons存储plt的多边形实例(即bbox), colors存储每个bbox对应的颜色(区分不同的类别)polygons, colors = [], []for ann in anns:color = image2color[ann['category_id']]x, y, w, h = ann['bbox']# 采用多边形画法:poly = [[x, y], [x, y + h], [x + w, y + h], [x + w, y]]polygons.append(Polygon(np.array(poly).reshape((4,2))))colors.append(color)# 可视化每个bbox的类别的文本(ax.text的bbox参数用于调整文本框的样式):ax.text(x, y, f"{coco.loadCats(ann['category_id'])[0]['name']}", color='white', bbox=dict(facecolor=color))# PatchCollection批量绘制图形, 而不是单独绘制每一个(采用填充,透明度为alpha)p = PatchCollection(polygons, facecolor=colors, linewidths=0, alpha=0.4)ax.add_collection(p)# 批量可视化coco格式数据集的GTdef visCOCOGTBoxes(self, jsonPath, imgDir, visNum, saveVisDir):'''批量可视化数据集GTBoxes(可以用于排查画框等错误)Args::param jsonPath:    COCO格式Json文件路径:param imgDir:      图像根目录:param visNum:      可视化几张图像:param saveVisDir:  可视化图像保存目录Retuens:None'''if not os.path.isdir(saveVisDir):os.makedirs(saveVisDir)# 创建COCO数据集读取实例:coco = COCO(jsonPath)# 每个类别都获得一个随机颜色:image2color = dict()for cat in coco.getCatIds():image2color[cat] = (np.random.random((1, 3)) * 0.7 + 0.3).tolist()[0]# 获取数据集中所有图像对应的imgId:imgId = coco.getImgIds()# 打乱数据集图像读取顺序:np.random.shuffle(imgId)for i in range(visNum):plt.figure(figsize=(20, 13))# 获取图像信息(json文件 "images" 字段)imgInfo = coco.loadImgs(imgId[i])[0]imgPath = os.path.normpath(os.path.join(imgDir, imgInfo['file_name']))# 这里win和linux或许不一样:imgName = imgPath.split('\\')[-1]# 得到当前图像里包含的BBox的所有idannIds = coco.getAnnIds(imgIds=imgInfo['id'])# anns (json文件 "annotations" 字段)anns = coco.loadAnns(annIds)# 读取图像image = Image.open(imgPath).convert('RGB')plt.imshow(image)# 画框:self.visCOCOGTBoxPerImg(coco, image2color, anns)# 样式:plt.xticks([])plt.yticks([])plt.tight_layout()# 保存可视化结果plt.savefig(os.path.join(saveVisDir, f'vis_{imgName}'), bbox_inches='tight', pad_inches=0.0, dpi=150)

example

if __name__ == '__main__':jsonPath = 'E:/datasets/RemoteSensing/visdrone2019/annotations/train.json'imgDir = 'E:/datasets/RemoteSensing/visdrone2019/images/train/images'saveVisDir = './vis1'COCOVis = VisCOCOBox()COCOVis.visCOCOGTBoxes(jsonPath, imgDir, 4, saveVisDir)

输出(COCO2017数据集train):
在这里插入图片描述

输出(VisDrone2019数据集):

在这里插入图片描述

这篇关于【代码整理】COCO格式数据集画框的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/635802

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则