(37)DWD 层(业务数据)

2024-01-22 23:08
文章标签 数据 业务 37 dwd

本文主要是介绍(37)DWD 层(业务数据),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

业务数据方面 DWD 层的搭建主要注意点在于维度建模,减少后续大量 Join 操作。

1. 商品维度表(全量)

商品维度表主要是将商品表 SKU 表、商品一级分类、商品二级分类、商品三级分类、
商品品牌表和商品 SPU 表联接为商品表。
1 )建表语句
hive (gmall)>
DROP TABLE IF EXISTS `dwd_dim_sku_info`;
CREATE EXTERNAL TABLE `dwd_dim_sku_info` (
`id` string COMMENT ' 商品 id',
`spu_id` string COMMENT 'spuid',
`price` decimal(16,2) COMMENT ' 商品价格 ',
`sku_name` string COMMENT ' 商品名称 ',
`sku_desc` string COMMENT ' 商品描述 ',
`weight` decimal(16,2) COMMENT ' 重量 ',
`tm_id` string COMMENT ' 品牌 id',
`tm_name` string COMMENT ' 品牌名称 ',
`category3_id` string COMMENT ' 三级分类 id',
`category2_id` string COMMENT ' 二级分类 id',
`category1_id` string COMMENT ' 一级分类 id',
`category3_name` string COMMENT ' 三级分类名称 ',
`category2_name` string COMMENT ' 二级分类名称 ',
`category1_name` string COMMENT ' 一级分类名称 ',
`spu_name` string COMMENT 'spu 名称 ',
`create_time` string COMMENT ' 创建时间 '
) COMMENT ' 商品维度表 '
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_dim_sku_info/'
tblproperties ("parquet.compression"="lzo");

 2)数据装载

hive (gmall)>
SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table dwd_dim_sku_info partition(dt='2020-06-14')
select
sku.id,
sku.spu_id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.tm_id,
ob.tm_name,
sku.category3_id,
c2.id category2_id,
c1.id category1_id,
c3.name category3_name,
c2.name category2_name,
c1.name category1_name,
spu.spu_name,
sku.create_time
from
(
select * from ods_sku_info where dt='2020-06-14'
)sku
join
(
select * from ods_base_trademark where dt='2020-06-14'
)ob on sku.tm_id=ob.tm_id
join
(
select * from ods_spu_info where dt='2020-06-14'
)spu on spu.id = sku.spu_id
join
(
select * from ods_base_category3 where dt='2020-06-14'
)c3 on sku.category3_id=c3.id
join
(
select * from ods_base_category2 where dt='2020-06-14'
)c2 on c3.category2_id=c2.id
join
(
select * from ods_base_category1 where dt='2020-06-14'
)c1 on c2.category1_id=c1.id;

 

3 )查询加载结果
hive (gmall)> select * from dwd_dim_sku_info where dt='2020-06-14' limit 2;
2.优惠券维度表(全量)
ODS ods_coupon_info 表数据导入到 DWD 层优惠卷维度表,在导入过程中可以做
适当的清洗。
1 )建表语句
hive (gmall)>
drop table if exists dwd_dim_coupon_info;
create external table dwd_dim_coupon_info(
`id` string COMMENT ' 购物券编号 ',
`coupon_name` string COMMENT ' 购物券名称 ',
`coupon_type` string COMMENT ' 购物券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券 ',
`condition_amount` decimal(16,2) COMMENT ' 满额数 ',
`condition_num` bigint COMMENT ' 满件数 ',
`activity_id` string COMMENT ' 活动编号 ',
`benefit_amount` decimal(16,2) COMMENT ' 减金额 ',
`benefit_discount` decimal(16,2) COMMENT ' 折扣 ',
`create_time` string COMMENT ' 创建时间 ',
`range_type` string COMMENT ' 范围类型 1 、商品 2 、品类 3 、品牌 ',
`spu_id` string COMMENT ' 商品 id',
`tm_id` string COMMENT ' 品牌 id',
`category3_id` string COMMENT ' 品类 id',
`limit_num` bigint COMMENT ' 最多领用次数 ',
`operate_time` string COMMENT ' 修改时间 ',
`expire_time` string COMMENT ' 过期时间 '
) COMMENT ' 优惠券维度表 '
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_dim_coupon_info/'
tblproperties ("parquet.compression"="lzo");
2 )数据装载
hive (gmall)>
SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table dwd_dim_coupon_info partition(dt='2020-06-14')
select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
spu_id,
tm_id,
category3_id,
limit_num,
operate_time,
expire_time
from ods_coupon_info
where dt='2020-06-14';
3 )查询加载结果
hive (gmall)> select * from dwd_dim_coupon_info where dt='2020-06-14' limit 2;
3 活动维度表(全量)
1 )建表语句
hive (gmall)>
drop table if exists dwd_dim_activity_info;
create external table dwd_dim_activity_info(
`id` string COMMENT ' 编号 ',
`activity_name` string COMMENT ' 活动名称 ',
`activity_type` string COMMENT ' 活动类型 ',
`start_time` string COMMENT ' 开始时间 ',
`end_time` string COMMENT ' 结束时间 ',
`create_time` string COMMENT ' 创建时间 '
) COMMENT ' 活动信息表 '
PARTITIONED BY (`dt` string)
stored as parquet
location '/warehouse/gmall/dwd/dwd_dim_activity_info/'
tblproperties ("parquet.compression"="lzo");
2 )数据装载
hive (gmall)>
SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table dwd_dim_activity_info partition(dt='2020-06-14')
select
id,
activity_name,
activity_type,
start_time,
end_time,
create_time
from ods_activity_info
where dt='2020-06-14';
3 )查询加载结果
hive (gmall)> select * from dwd_dim_activity_info where dt='2020-06-14' limit 2;
4 地区维度表(特殊)
1 )建表语句
hive (gmall)>
DROP TABLE IF EXISTS `dwd_dim_base_province`;
CREATE EXTERNAL TABLE `dwd_dim_base_province` (
`id` string COMMENT 'id',
`province_name` string COMMENT ' 省市名称 ',
`area_code` string COMMENT ' 地区编码 ',
`iso_code` string COMMENT 'ISO 编码 ',
`region_id` string COMMENT ' 地区 id',
`region_name` string COMMENT ' 地区名称 '
) COMMENT ' 地区维度表 '
stored as parquet
location '/warehouse/gmall/dwd/dwd_dim_base_province/'
tblproperties ("parquet.compression"="lzo");
2 )数据装载
hive (gmall)>
SET hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table dwd_dim_base_province
select
bp.id,
bp.name,
bp.area_code,
bp.iso_code,
bp.region_id,
br.region_name
from
(
select * from ods_base_province
) bp
join
(
select * from ods_base_region
) br
on bp.region_id = br.id;
3 )查询加载结果
hive (gmall)> select * from dwd_dim_base_province limit 2;
5 时间维度表(特殊)
1 )建表语句
hive (gmall)>
DROP TABLE IF EXISTS `dwd_dim_date_info`;
CREATE EXTERNAL TABLE `dwd_dim_date_info`(
`date_id` string COMMENT ' ',
`week_id` string COMMENT ' ',
`week_day` string COMMENT ' 周的第几天 ',
`day` string COMMENT ' 每月的第几天 ',
`month` string COMMENT ' 第几月 ',
`quarter` string COMMENT ' 第几季度 ',
`year` string COMMENT ' ',
`is_workday` string COMMENT ' 是否是周末 ',
`holiday_id` string COMMENT ' 是否是节假日 '
) COMMENT ' 时间维度表 '
stored as parquet
location '/warehouse/gmall/dwd/dwd_dim_date_info/'
tblproperties ("parquet.compression"="lzo");
2 )把 date_info.txt 文件上传到 hadoop102 /opt/module/db_log/ 路径
3 )数据装载
注意:由于 dwd_dim_date_info 是列式存储 +LZO 压缩。直接将 date_info.txt 文件导入到
目标表,并不会直接转换为列式存储 +LZO 压缩。我们需要创建一张普通的临时表
dwd_dim_date_info_tmp ,将 date_info.txt 加载到该临时表中。最后通过查询临时表数据,把
查询到的数据插入到最终的目标表中。
1 )创建临时表,非列式存储
hive (gmall)>
DROP TABLE IF EXISTS `dwd_dim_date_info_tmp`;
CREATE EXTERNAL TABLE `dwd_dim_date_info_tmp`(
`date_id` string COMMENT ' ',
`week_id` string COMMENT ' ',
`week_day` string COMMENT ' 周的第几天 ',
`day` string COMMENT ' 每月的第几天 ',
`month` string COMMENT ' 第几月 ',
`quarter` string COMMENT ' 第几季度 ',
`year` string COMMENT ' ',
`is_workday` string COMMENT ' 是否是周末 ',
`holiday_id` string COMMENT ' 是否是节假日 '
) COMMENT ' 时间临时表 '
row format delimited fields terminated by '\t'
location '/warehouse/gmall/dwd/dwd_dim_date_info_tmp/';
2 )将数据导入临时表
hive (gmall)>
load data
local
inpath '/opt/module/db_log/date_info.txt' into table
dwd_dim_date_info_tmp;
3 )将数据导入正式表
hive (gmall)>
insert overwrite table dwd_dim_date_info select * from dwd_dim_date_info_tmp;
4 )查询加载结果
hive (gmall)> select * from dwd_dim_date_info;

这篇关于(37)DWD 层(业务数据)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/634528

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语