【射影几何11】完全四边形和交比研究

2024-01-22 20:52

本文主要是介绍【射影几何11】完全四边形和交比研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、说明

   对于交比的灵活应用,尚有许多情况需要讨论,首先引出完全四边形的例子,该关键词的应用非常普遍;其次,我们尝试用交比证明一些事实;随后我们又引出交比射影案例的特殊情况。

二、完全四边形

2.1 完全四边形定义

   【定义】完全四边形,就是存在四条线,其中不允许出现三条线共点,那么四条线围成的区域,即是完全四边形。
讨论:什么不是完全四边形?
在这里插入图片描述
上图,退化成三边形,不是完全四边形
在这里插入图片描述
上图为梯形,是完全四边形。只是作图中常常不用梯形,因为平行线相交无穷远无法做出。

2.2 完全四边形的对角线

   完全四边形的对角线及其重要,这里专门强调一下。
在这里插入图片描述
上图中AC、DB、EF是完全四边形的对角线,对角线三条,不要搞错,EF也是对角线!。

2.3 完全四边形的对角线上的调和点列

   如图,直线AE、BE、AF、BI构成一个完全四边形EIGF,直线AB、IF、EG为对角线。记A、B、C、D的交比为(ABCD),则(ABCD)=-1。

在这里插入图片描述
  根据交比的不变性,由E点的投影,有 x = ( A B C D ) = ( I F H D ) x=(ABCD)=(IFHD) x=(ABCD)=(IFHD)
  由G点的投影,有 ( B A C D ) = ( I F H D ) (BACD)=(IFHD) (BACD)=(IFHD)
根据定义,有 ( B A C D ) = 1 ( A B C D ) = 1 x (BACD)={\frac {1}{(ABCD)}}={\frac {1}{x}} (BACD)=(ABCD)1=x1
  因此, x = 1 x x={\frac {1}{x}} x=x1
  由于A、B、C、D四点的相对位置, x < 0 x<0 x<0,故 ( A B C D ) = x = − 1 (ABCD)=x=-1 (ABCD)=x=1
证毕。

事实上,还有一组调和点列,在对角线EG上,我们下文专门谈及。

2.3 交比证明的思维方式

   射影几何的证明,很容易眼花,这里发明一个思维模式:
引进一个运算符号:

See(point)= {交比点列1,交比点列2,,交比点列N}

   point是发射点,其中SEE(point)表示:从point为发射点,能够看到的交比点列。比如下图
在这里插入图片描述
从E看到交比点列是IHFD和ACBD,表示为:
See(E) ={(IHFD), (ACBD)}
同理:
See(A) = {(IHFD), (EHGC)}
用等价性发现(ACBD)=(EHGC):
【推论】在完全四边形对角线AD,HD,EC上都有一组调和点列。

三、交比应用的特殊情况

3.1 对顶射影

   如下图,在下图中,射影的交比循序【ABCD】和【A’B’C’D’】应该是相等的。

在这里插入图片描述

3.2 线束差180度如何

   半对顶映射将如何处理?比如下图:
1)从B点发出线束BD,BD,BS,BE,横截两个直线AE和CD,能否说明
(A1SE)=(CDS2)【这里关键是,能否将BA和BC线束看成一条?】

在这里插入图片描述

这篇关于【射影几何11】完全四边形和交比研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/634210

相关文章

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

Linux find 命令完全指南及核心用法

《Linuxfind命令完全指南及核心用法》find是Linux系统最强大的文件搜索工具,支持嵌套遍历、条件筛选、执行动作,下面给大家介绍Linuxfind命令完全指南,感兴趣的朋友一起看看吧... 目录一、基础搜索模式1. 按文件名搜索(精确/模糊匹配)2. 排除指定目录/文件二、根据文件类型筛选三、时间

JavaScript中的Map用法完全指南

《JavaScript中的Map用法完全指南》:本文主要介绍JavaScript中Map用法的相关资料,通过实例讲解了Map的创建、常用方法和迭代方式,还探讨了Map与对象的区别,并通过一个例子展... 目录引言1. 创建 Map2. Map 和对象的对比3. Map 的常用方法3.1 set(key, v

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc