jieba+wordcloud分析豆瓣惊奇队长影评

2024-01-22 13:50

本文主要是介绍jieba+wordcloud分析豆瓣惊奇队长影评,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

复联三过后或许你还惊魂未定就被惊奇队长里的噬元兽吓到恐猫,whatever,本文将会介绍如何从豆瓣爬取惊奇队长的短评并加工处理生成词云。

爬取评论

首先还是爬取评论,老规矩用requests和BeautifulSoup就行。通过查看网页源码容易发现所有的短评都放在span标签中且class为short,这样就很方便了,用find_all就完事了。

# -*- coding:utf-8 -*-
import requests
import time
import random
from bs4 import BeautifulSoupurls = []
for i in range(0, 500, 20):urls.append('https://movie.douban.com/subject/26213252/comments?start=' + str(i) + '&limit=20&sort=new_score&status=P')  # 评论的翻页def singlepage_comment(url):# 得到单页的评论headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_3) AppleWebKit/537.36 (KHTML, like Gecko)''Chrome/65.0.3325.162 Safari/537.36'}html = requests.get(url, headers)html.encoding = 'utf-8'soup = BeautifulSoup(html.text, 'lxml')fk = []for comment in soup.find_all(name='span', class_='short'):fk.append(comment.text)return fk# singlepage_comment('https://movie.douban.com/subject/26213252/comments?start=40&limit=20&sort=new_score&status=P')def store_comment(fk):# f = open('comments.txt', mode='w', encoding='utf-8')for comment in fk:f.write(comment)f.write('\n\n')# f.close()f = open('comments.txt', mode='w', encoding='utf-8')
for url in urls:comments = singlepage_comment(url)#print(comments)store_comment(comments)time.sleep(random.randrange(1, 3))  # 反爬f.close()

分词

分词这个部分使用jieba
具体的使用可以参考 https://github.com/fxsjy/jieba
安装使用的话 pip3 install jieba
ps. 若此处遇到安装错误的情况可能是pip版本太旧导致,运行python -m pip intsall --upgrade pip即可。

#-*- coding:utf-8 -*-
import jiebaf = open('comments.txt', mode='r', encoding='utf-8')comments = f.readlines()#sentence = "1.第一次看电影片头就有人鼓掌,Thank You Stan;2.漫威还是比DC会选角,神奇女侠完全是物化女性审美,惊奇队长是真女权,没有任何爱情戏,是女人就靠自己;3.铲屎官噩梦。"jieba.load_userdict('dict.txt')for comment in comments:seg_list = jieba.cut(comment)print("Full Mode: " + "/ ".join(seg_list))

对于这样一个语境,使用默认的字典分词会得到一些奇怪的结果,例如

Full Mode: 1/ ./ 第一次/ 看/ 电影片/ 头/ 就/ 有人/ 鼓掌/ ,/ Thank/  / You/  / Stan/ ;/ 2/ ./ 漫威/ 还是/ 比/ DC/ 会选角/ ,/ 神奇/ 女侠/ 完全/ 是/ 物化/ 女性/ 审美/ ,/ 惊奇/ 队长/ 是/ 真/ 女权/ ,/ 没有/ 任何/ 爱情/ 戏/ ,/ 是/ 女人/ 就/ 靠/ 自己/ ;/ 3/ ./ 铲/ 屎/ 官/ 噩梦/ 。

可见jieba并不能识别出例如惊奇队长、漫威、铲屎官、噬元兽等角色名以及一些简写、网络语言等,因此需要手动添加用户词典,这里我添加了一些常见的名词。
ps.这个列表可以通过查看分词的结果逐步加以调整

惊奇队长
漫威
DC
神奇女侠
美国队长
铲屎官
噬元兽
复联4
咕咕
尼克费瑞
寇森
美队
斯坦李
银河护卫队

添加用户词典后,分词的准确性和有效性就大为增长。

生成词云

这一步相对就较为简单了。
同样先安装wordcloud库pip3 install wordcloud
还需要用到matplotlib 这是一个画图的库

#-*- coding:utf-8 -*-
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import jiebaf = open('comments.txt', mode='r', encoding='utf-8')
comments = f.readlines()
jieba.load_userdict('dict.txt')text = ''
for comment in comments:text += ' '.join(jieba.cut(comment))wordcloud = WordCloud(font_path="C:/Windows/Fonts/msyh.ttc",background_color="white",width=1000,height=880,stopwords={'漫威','惊奇队长','电影','就是','没有','一个','什么','还是','不是','可以','真的','角色','剧情','这个'}).generate(text)plt.imshow(wordcloud, interpolation="bilinear")
plt.axis("off")
plt.show()

同样需要注意的是停用词。未启用停用词前
在未启用停用词前会有大量的干扰,例如漫威、电影、惊奇队长等与分析无关的词。在不断调整停用词后,就能得到一个比较有参考意义的词云。启用停用词后
之后生成的词云就比较有参考意义。

这篇关于jieba+wordcloud分析豆瓣惊奇队长影评的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/633174

相关文章

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.