深度学习——Optimizer算法学习笔记(AdamW)

2024-01-22 11:18

本文主要是介绍深度学习——Optimizer算法学习笔记(AdamW),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 致谢

感谢赵老师的讲授!

2 前言

今天在学习Pytorch~记得Johnson助教好像讲过有一个优化算法最好用的,不过忘了是哪一个了,然后就回顾了一下赵老师讲课的视频;

3 最常用的Optimizer算法是Adam方法

最常用的Optimization算法是Adam方法;
(我在Wider Face数据集上用过一次Adam方法,不过用了一下感觉效果不是很好;

后来赵老师在课上讲到这种自适应的方法总存在一些局限性:
“从最后训练的精度上来看,还是SGD方法好一些,虽然训练会慢一些;如果是80个Epoch,可以先用Adam训练30个Epoch.等到最难的地方差不多过去的时候,再用SGD继续进行训练;”

我看了一下这个比例:3/8 = 0.375 = 1 - 0.625,感觉跟黄金比例有点类似0.618,
以后可以再做实验来看看; )

4 优化器函数说明

CLASS torch.optim.Optimizer(params, defaults)
所有优化器算法的基类。
Parameters:

  • params (iterable) – torch.Tensor s或 dict s的迭代器。

5 常见的Optimizer算法

5.1 基本的符号表示

α \alpha α:学习率

5.1 SGD方法(Stochastic Gradient Descent)

就是最普通的随机梯度下降方法。

5.2 SGD with Momentum

带有动量的SGD优化方法。
其公式如下:
{ v t = γ v t − 1 − α ⋅ ∇ θ J ( θ t − 1 ) θ t = θ t − 1 + v t \left\{\begin{matrix} v_t = \gamma v_{t-1} - \alpha\cdot\nabla_\theta J\left ( \theta_{t-1}\right )\\ \theta_t = \theta_{t-1} + v_t \end{matrix}\right. {vt=γvt1αθJ(θt1)θt=θt1+vt

4.2 Nesterov方法

根据t时刻速度计算Momentum的方法,
其公式如下:
v t + 1 = μ ∗ v t + α ∗ g t p t + 1 = p t − l r ∗ ( v t + 1 + α ∗ g t ) v_{t+1} = \mu*v_{t} + \alpha*g_{t}\\ p_{t+1} = p_t - lr*(v_{t+1} + \alpha*g_{t}) vt+1=μvt+αgtpt+1=ptlr(vt+1+αgt)
(由于Nesterov方法有多种不同的实现方法,这里我们采用的是PyTorch的官方文档中给出的公式,此公式是我根据PyTorch中原始公式进行相应扩展得出的)
(单凭上面的公式难以直接看出Nesterov方法的含义,我们可以参考一下Nesterov方法的原始论文中的公式,
在这里插入图片描述
可以看到 t + 1 t+1 t+1时刻的速度是由他 t + 1 t+1 t+1时刻的梯度(即 ∇ f ( θ t + μ v t ) \nabla f\left ( \theta_t + \mu v_t\right ) f(θt+μvt))计算出来的)
(具体的推导可以参阅我的博文《深度学习——Nesterov方法的学习笔记》)

4.3 Adam方法

Adam方法的公式如下:
{ g t = ∇ θ f t ( θ t − 1 ) m t = β 1 ⋅ m t − 1 + ( 1 − β 1 ) ⋅ g t v t = β 2 ⋅ v t − 1 + ( 1 − β 2 ) ⋅ g t 2 m ^ t = m t 1 − β 1 t v ^ t = v t 1 − β 2 t θ t = θ t − 1 − α ⋅ m ^ t v ^ t + ϵ \left\{\begin{matrix} g_t = \nabla_\theta f_t\left ( \theta_{t-1}\right )\\ m_t = \beta_1\cdot m_{t-1}+\left ( 1 - \beta_1\right ) \cdot g_t\\ v_t = \beta_2\cdot v_{t-1} + \left ( 1 - \beta_2\right ) \cdot {g_t}^2\\ \hat{m}_t = \frac{m_t}{1 - {\beta_1}^t}\\ \hat{v}_t = \frac{v_t}{1 - {\beta_2}^t}\\ \theta_t = \theta_{t-1} - \frac{\alpha \cdot \hat{m}_t}{\sqrt{\hat{v}_t}+\epsilon} \end{matrix}\right. gt=θft(θt1)mt=β1mt1+(1β1)gtvt=β2vt1+(1β2)gt2m^t=1β1tmtv^t=1β2tvtθt=θt1v^t +ϵαm^t
在PyTorch中的函数形式为:
torch.optim.Adam(params, lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, amsgrad=False)
其中 β 1 \beta_1 β1 β 2 \beta_2 β2的默认值分别为 0.9 0.9 0.9 0.999 0.999 0.999

4.3.1 Adam算法形象化的解释

Adam算法最为优秀之处在于,解决了鞍点的问题,那么我们首先来看看什么是鞍点:
在这里插入图片描述
这个GIF的动图能很好地形象化地解释鞍点,以及各个优化器函数的表现;
在Adam算法中,分母v作为惩罚项,用来记录小球的能量;
则在鞍点附近,小球会有如下类似形象化的表现:
如果小球在x方向上震荡,则能量v会不断累计,而由于震荡,梯度一阶估计m则会出现有正有负的情况,从而被削弱,震荡变小;
同时,如果y方向是鞍点真正的落点,则由于小球在该方向上没有震荡,虽然能量也在累计,但是梯度的方向一直朝下,此时相对于x方向上的力而言,y方向上力占主导,从而引导小球向落点滑动,从而更加顺利的走出鞍点,滑向落点;

4.4 AdamW——Adam with decoupled weight decay

(请参见论文《Decoupled Weight Decay Regularization》)
AdamW也就是使用了“decoupled weight decay”的优化器算法,具体表现形式就是在后面加上了一个“衰减的正则项”,
在这里插入图片描述这里的“正则项”是我在网上看到的解释(虽然明明老师也是这样解释的),不过我觉得不是很形象;
在我看来这里的“decoupled weight decay”实际上就是一种滑动平均,(将 η t λ \eta_t\lambda ηtλ移出来,写成 ( 1 − η t λ ) θ t (1-\eta_t\lambda)\boldsymbol{\theta}_t (1ηtλ)θt),就可以发现这里的weight-decay实际上实现了一种滑动平均的效果;
(有三老师也说“weight-decay的参数都是为了移动平均”)

5 自适应Optimization算法

自适应最优解算法所解决的根本问题,就是如何解决不同参数朝向不同局部最优解前进时的分歧问题;

6 学习笔记

WeightDecay实际上就是L2-Regularization

这里我们需要记住的是:
WeightDecay实际上就是L2-Regularization。
关于相关的解释,请参考《动手学深度学习 2.0.0 | 4.5.1. 范数与权重衰减》;

一般来说,网络输出层的偏置项不需要正则化

这个观点也是在《动手学深度学习 2.0.0 | 4.5.1. 范数与权重衰减》看到的;

这篇关于深度学习——Optimizer算法学习笔记(AdamW)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632793

相关文章

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析