rk1126, 实现 yolov8 目标检测

2024-01-22 10:44

本文主要是介绍rk1126, 实现 yolov8 目标检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

基于 RKNN 1126 实现 yolov8 目标检测


Ⓜ️ RKNN 模型转换

  1. ONNX

    yolo export model=./weights/yolov8s.pt format=onnx
    
  2. 导出 RKNN

    这里选择输出 concat 输入两个节点 onnx::Concat_425onnx::Concat_426

在这里插入图片描述

from rknn.api import RKNNONNX_MODEL = './weights/yolov8s.onnx'RKNN_MODEL = './weights/yolov8s.rknn'QUA_DATASETS = './data/coco/datasets.txt'QUA_DATASETS_analysis = './data/coco/images/datasets_ans.txt'QUANTIZE_ON = Trueif __name__ == '__main__':# Create RKNN objectrknn = RKNN(verbose=True)# pre-process config  # asymmetric_affine-u8, dynamic_fixed_point-i8, dynamic_fixed_point-i16print('--> config model')rknn.config(reorder_channel='0 1 2',mean_values=[[0, 0, 0]],std_values=[[255, 255, 255]],quantized_algorithm="normal",optimization_level=3,target_platform = 'rk1126',quantize_input_node= QUANTIZE_ON,quantized_dtype='asymmetric_quantized-u8',batch_size = 64,force_builtin_perm = False)print('done')print('--> Loading model')ret = rknn.load_onnx(model=ONNX_MODEL, outputs=['onnx::Concat_425', 'onnx::Concat_426'])if ret != 0:print('Load model  failed!')exit(ret)print('done')# Build modelprint('--> Building model')ret = rknn.build(do_quantization=QUANTIZE_ON, dataset=QUA_DATASETS,pre_compile=True)  # ,pre_compile=Trueif ret != 0:print('Build occ_model failed!')exit(ret)print('done')# Export rknn modelprint('--> Export RKNN model')ret = rknn.export_rknn(RKNN_MODEL)if ret != 0:print('Export occ_model failed!')exit(ret)print('done')

🚀​ RKNN板子上推理

  1. 前处理,为了简单方便直接 resize

    cv::Mat resize_img(INPUT_H, INPUT_W, CV_8UC3);
    cv::resize(src, resize_img, resize_img.size(), 0, 0, cv::INTER_LINEAR);
    cv::Mat pr_img;
    cvtColor(resize_img, pr_img, COLOR_BGR2RGB);
    
  2. 模型推理

    /* Init input tensor */
    rknn_input inputs[1];
    memset(inputs, 0, sizeof(inputs));
    inputs[0].index = 0;
    inputs[0].buf = pr_img.data;
    // inputs[0].buf = input_data;
    inputs[0].type = RKNN_TENSOR_UINT8;
    inputs[0].size = input_width * input_height * input_channel;
    inputs[0].fmt = RKNN_TENSOR_NHWC;
    inputs[0].pass_through = 0;// printf("img.cols: %d, img.rows: %d\n", pr_img.cols, pr_img.rows);
    printf("input io_num: %d, output io_num: %d\n", io_num.n_input, io_num.n_output);
    auto t1 = std::chrono::steady_clock::now();
    rknn_inputs_set(ctx, io_num.n_input, inputs);
    std::cout << "rknn_inputs_set time: " << std::chrono::duration_cast<std::chrono::duration<double>>(std::chrono::steady_clock::now() - t1).count() * 1000 << " ms." << std::endl;
    ret = rknn_run(ctx, NULL);
    std::cout << "rknn_run time: " << std::chrono::duration_cast<std::chrono::duration<double>>(std::chrono::steady_clock::now() - t1).count() * 1000 << " ms." << std::endl;
    if (ret < 0)
    {printf("ctx error ret=%d\n", ret);return -1;
    }/* Init output tensor */
    rknn_output outputs[io_num.n_output];
    memset(outputs, 0, sizeof(outputs));
    for (int i = 0; i < io_num.n_output; i++)
    {outputs[i].want_float = 1;
    }
    ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
    if (ret < 0)
    {printf("outputs error ret=%d\n", ret);return -1;
    }
    
  3. 后处理

    1. 导出模型没有进行 concat 操作,所以自行处理.
    cv::Mat out_buffer0_mat;
    std::vector<Mat> vImgs;
    cv::Mat out0_mat = cv::Mat(4, Num_box, CV_32F, (float*)outputs[0].buf);
    cv::Mat out1_mat = cv::Mat(CLASSES, Num_box, CV_32F, (float*)outputs[1].buf);
    vImgs.push_back(out0_mat);       // 4 * 8400
    vImgs.push_back(out1_mat);       // CLASSES * 8400
    vconcat(vImgs, out_buffer0_mat); // 垂直方向拼接  (CLASSES + 4) * 8400
    
    1. 后处理
    std::vector<Detection> detections; // 结果id数组std::vector<int> classIds;      // 结果id数组
    std::vector<float> confidences; // 结果每个id对应置信度数组
    std::vector<cv::Rect> boxes;    // 每个id矩形框
    auto start = std::chrono::system_clock::now();
    for (int i = 0; i < Num_box; i++)
    {// 输出是1*net_length*Num_box;所以每个box的属性是每隔Num_box取一个值,共net_length个值cv::Mat scores = out_buffer0_mat(Rect(i, 4, 1, CLASSES)).clone();Point classIdPoint;Point minclassIdPoint;double max_class_socre;double min_class_socre;minMaxLoc(scores, &min_class_socre, &max_class_socre, &minclassIdPoint, &classIdPoint);// if (max_class_socre > CONF_THRESHOLD)//     std::cout << "max_class_socre:" << max_class_socre << std::endl;max_class_socre = (float)max_class_socre;if (max_class_socre >= CONF_THRESHOLD){float x = (out_buffer0_mat.at<float>(0, i)) * ratio_w; // cxfloat y = (out_buffer0_mat.at<float>(1, i)) * ratio_h; // cyfloat w = out_buffer0_mat.at<float>(2, i) * ratio_w;   // wfloat h = out_buffer0_mat.at<float>(3, i) * ratio_h;   // hint left = MAX((x - 0.5 * w), 0);int top = MAX((y - 0.5 * h), 0);int width = (int)w;int height = (int)h;if (width <= 0 || height <= 0)continue;printf("====> id: %d \n", classIdPoint.y);classIds.push_back(classIdPoint.y);confidences.push_back(max_class_socre);boxes.push_back(Rect(left, top, width, height));}
    }// 执行非最大抑制以消除具有较低置信度的冗余重叠框(NMS)![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/a9897fddb01642358b2a9047ccd98067.jpeg#pic_center)std::vector<int> nms_result;
    cv::dnn::NMSBoxes(boxes, confidences, CONF_THRESHOLD, NMS_THRESHOLD, nms_result);std::cout << ">>>>> nms_result: " << boxes.size() << " " << nms_result.size() << std::endl;for (int i = 0; i < nms_result.size(); ++i)
    {Detection detection;int idx = nms_result[i];detection.class_id = classIds[idx];detection.conf = confidences[idx];detection.box = boxes[idx];detections.push_back(detection);
    }
    

在这里插入图片描述

在这里插入图片描述


🇶🇦 关于遇到的问题 ?

  • 当我指定 onnx 最后一层时 (output0),导出的 rknn模型推理没有结果。个人感觉是 rknn 量化时, concat操作有问题. 所以我改成输出上两个节点,自行拼接. 如果有明白的大佬,望指定一二, 抱拳了 .

在这里插入图片描述

这篇关于rk1126, 实现 yolov8 目标检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632739

相关文章

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM