操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值

本文主要是介绍操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蒙特·卡罗方法

蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是一类随机方法的统称。这类方法的特点是,可以在随机采样上计算得到近似结果,随着采样的增多,得到的结果是正确结果的概率逐渐加大。

在本实验中通过在正方形区域中生成随机点,记录随机点在圆形区域中的个数计算 π \pi π 值。
π = 4 × ( n u m b e r o f p o i n t s i n c i r c l e ) / ( t o t a l n u m b e r o f p o i n t s ) \pi= 4 \times (number \; of \; points \; in \; circle) / (total \; number \; of \; points) π=4×(numberofpointsincircle)/(totalnumberofpoints)
蒙特卡洛算法

整体思路

在主函数中开辟两个线程,在线程函数中分别将其绑定在两个CPU核上进行运算,通过一个循环源源不断地在正方形区域中生成随机点。

为了完成结果统计,定义了两个全局变量分别表示总点数和在圆形区域内的点数。

另外,为了避免两个线程同时对同一变量进行修改,需要对两个全局变量变量在使用的时候进行加锁。为了保证运行速度,在加锁的过程中要使临界区尽可能小。

【完整代码见文章最后】


生成随机点

在主函数中先使用srand(1)初始化随机数种子,在进程函数中通过对rand()函数的放缩和平移运算得到 -1~1 范围内的小数。

//生成随机点 [-1,1]
x = 2.0 * rand() / (double)RAND_MAX - 1;
y = 2.0 * rand() / (double)RAND_MAX - 1;

判断点在圆内

单独使用一个函数进行判断点是否在圆内,通过对传入的一组点坐标进行平方和运算得出判断结果。因为C语言中是没有 bool 类型的,所以这里“在圆内”则返回1,“不在圆内”则返回0 。

//判断点是否在圆内
int inCircle(double x, double y) {int flag = 1;if ((x * x + y * y) <= 1.0)flag = 1;elseflag = 0;return flag;
}

变量加锁

首先声明两个全局变量和分别与其对应的两个锁,并在主函数中将其初始化。

//全局变量
int sum_dots = 1000000;	//点的总数
int sum_in_circle = 0;	//在圆内的点的总数//声明锁
pthread_mutex_t lock_sum;	//对sum_dots的锁
pthread_mutex_t lock_in;	//对sum_in_circle的锁
//初始化锁
pthread_mutex_init(&lock_sum, NULL);
pthread_mutex_init(&lock_in, NULL);

在线程中有一个生成随机点的循环,每次循环开始的时候先将点总数sum_dots上锁pthread_mutex_lock(&lock_sum),判断是否还有剩余点,如果有则将点数减一后立刻解锁pthread_mutex_unlock(&lock_sum);,如果没有剩余点也立刻解锁同时 break 出循环。

之后生成随机点,并判断点是否在圆中,若在圆中则对sum_in_circle上锁,进行加一运算后立刻解锁,最大程度上减小临界区域。

while (1){pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}		}

结果截图

本实验中进行了 4 次小实验,分别为 100万 个测试点时的单线程和双线程结果和 1000万 个测试点时的单线程和双线程结果。

100万个点 双线程:100万个点 双线程
100万个点 单线程:

100万个点 单线程

1000万个点 双线程:

1000万个点 双线程

1000万个点 单线程:

1000万个点 单线程


结果分析

当测试点个数相同时,从结果可以看出双线程的运行时间明显长于单线程。这是因为加锁缘故,其它线程在临界区内会有所暂停,导致了整体运行时间长于单线程。

至于同样测试点的条件下,双线程的精度高于单线程,可能是实验偶然性,但是我之后又做了几组实验同样是这样的结果。我猜测可能是因为C语言中的rand()函数是伪随机,加上我在实验中用的初始化随机种子是定值,因此单线程的结果可以复现,随机数据的混乱程度不高,但是多线程在调度rand随机序列的顺序上又多了一层随机性,可能提高了rand()函数的随机性。当然这个猜测并没有理论依据,希望路过的大佬给予解答。

当都是单线程或都是双线程时,测试点越多预测精度越高,误差越小,这个也可以从上面的结果中看出来,这即为概率论中的大数定律,也是蒙特·卡罗(Monte Carlo)方法的精髓所在。


代码

双线程用蒙特·卡罗(Monte Carlo)方法求 π \pi π 值的完整代码如下,单线程方法仅在主函数中将其中一个线程注释掉即可。

#include <stdio.h>
#include <stdlib.h>
#ifndef __USE_GNU
#define __USE_GNU
#endif // !__USE_GNU
#include <unistd.h>
#include <sched.h>
#include <pthread.h>
#include <semaphore.h>double PI = 3.1415926535898;	//标准PI值//全局变量
int sum_dots = 1000000;	//点的总数
int sum_in_circle = 0;	//在圆内的点的总数//声明锁
pthread_mutex_t lock_sum;
pthread_mutex_t lock_in;//判断点是否在圆内
int inCircle(double x, double y) {int flag = 1;if ((x * x + y * y) <= 1.0)flag = 1;elseflag = 0;return flag;
}void* runner1() {	//将线程绑定到0号核上cpu_set_t cpuSet;CPU_ZERO(&cpuSet);CPU_SET(0, &cpuSet);sched_setaffinity(0, sizeof(cpuSet), &cpuSet);double x, y;	//随机点坐标while (1){pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}		}pthread_exit(NULL);	//退出线程
}void* runner2() {//将线程绑定到1号核上cpu_set_t cpuSet;CPU_ZERO(&cpuSet);CPU_SET(1, &cpuSet);sched_setaffinity(0, sizeof(cpuSet), &cpuSet);double x, y;	//随机点坐标while (1) {pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}}pthread_exit(NULL);	//退出线程
}int main(){int sum_dots_p = sum_dots;	//复制总点数,作最后计算用pthread_t tid1, tid2;		//线程IDpthread_attr_t attr;		//线程属性pthread_attr_init(&attr);	//设置默认线程属性//初始化随机数发生器 srand(1);//初始化锁pthread_mutex_init(&lock_sum, NULL);pthread_mutex_init(&lock_in, NULL);//执行两个线程分别进行随机生成点pthread_create(&tid1, &attr, runner1, NULL);pthread_create(&tid2, &attr, runner2, NULL);//等待两个线程pthread_join(tid1, NULL);pthread_join(tid2, NULL);//计算结果double estimate_PI = (double)(4.0 * sum_in_circle / sum_dots_p);printf("PI: %lf\n", estimate_PI);printf("Error Value: %lf\n", estimate_PI - PI);return 0;
} 

这篇关于操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/631916

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端