操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值

本文主要是介绍操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蒙特·卡罗方法

蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是一类随机方法的统称。这类方法的特点是,可以在随机采样上计算得到近似结果,随着采样的增多,得到的结果是正确结果的概率逐渐加大。

在本实验中通过在正方形区域中生成随机点,记录随机点在圆形区域中的个数计算 π \pi π 值。
π = 4 × ( n u m b e r o f p o i n t s i n c i r c l e ) / ( t o t a l n u m b e r o f p o i n t s ) \pi= 4 \times (number \; of \; points \; in \; circle) / (total \; number \; of \; points) π=4×(numberofpointsincircle)/(totalnumberofpoints)
蒙特卡洛算法

整体思路

在主函数中开辟两个线程,在线程函数中分别将其绑定在两个CPU核上进行运算,通过一个循环源源不断地在正方形区域中生成随机点。

为了完成结果统计,定义了两个全局变量分别表示总点数和在圆形区域内的点数。

另外,为了避免两个线程同时对同一变量进行修改,需要对两个全局变量变量在使用的时候进行加锁。为了保证运行速度,在加锁的过程中要使临界区尽可能小。

【完整代码见文章最后】


生成随机点

在主函数中先使用srand(1)初始化随机数种子,在进程函数中通过对rand()函数的放缩和平移运算得到 -1~1 范围内的小数。

//生成随机点 [-1,1]
x = 2.0 * rand() / (double)RAND_MAX - 1;
y = 2.0 * rand() / (double)RAND_MAX - 1;

判断点在圆内

单独使用一个函数进行判断点是否在圆内,通过对传入的一组点坐标进行平方和运算得出判断结果。因为C语言中是没有 bool 类型的,所以这里“在圆内”则返回1,“不在圆内”则返回0 。

//判断点是否在圆内
int inCircle(double x, double y) {int flag = 1;if ((x * x + y * y) <= 1.0)flag = 1;elseflag = 0;return flag;
}

变量加锁

首先声明两个全局变量和分别与其对应的两个锁,并在主函数中将其初始化。

//全局变量
int sum_dots = 1000000;	//点的总数
int sum_in_circle = 0;	//在圆内的点的总数//声明锁
pthread_mutex_t lock_sum;	//对sum_dots的锁
pthread_mutex_t lock_in;	//对sum_in_circle的锁
//初始化锁
pthread_mutex_init(&lock_sum, NULL);
pthread_mutex_init(&lock_in, NULL);

在线程中有一个生成随机点的循环,每次循环开始的时候先将点总数sum_dots上锁pthread_mutex_lock(&lock_sum),判断是否还有剩余点,如果有则将点数减一后立刻解锁pthread_mutex_unlock(&lock_sum);,如果没有剩余点也立刻解锁同时 break 出循环。

之后生成随机点,并判断点是否在圆中,若在圆中则对sum_in_circle上锁,进行加一运算后立刻解锁,最大程度上减小临界区域。

while (1){pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}		}

结果截图

本实验中进行了 4 次小实验,分别为 100万 个测试点时的单线程和双线程结果和 1000万 个测试点时的单线程和双线程结果。

100万个点 双线程:100万个点 双线程
100万个点 单线程:

100万个点 单线程

1000万个点 双线程:

1000万个点 双线程

1000万个点 单线程:

1000万个点 单线程


结果分析

当测试点个数相同时,从结果可以看出双线程的运行时间明显长于单线程。这是因为加锁缘故,其它线程在临界区内会有所暂停,导致了整体运行时间长于单线程。

至于同样测试点的条件下,双线程的精度高于单线程,可能是实验偶然性,但是我之后又做了几组实验同样是这样的结果。我猜测可能是因为C语言中的rand()函数是伪随机,加上我在实验中用的初始化随机种子是定值,因此单线程的结果可以复现,随机数据的混乱程度不高,但是多线程在调度rand随机序列的顺序上又多了一层随机性,可能提高了rand()函数的随机性。当然这个猜测并没有理论依据,希望路过的大佬给予解答。

当都是单线程或都是双线程时,测试点越多预测精度越高,误差越小,这个也可以从上面的结果中看出来,这即为概率论中的大数定律,也是蒙特·卡罗(Monte Carlo)方法的精髓所在。


代码

双线程用蒙特·卡罗(Monte Carlo)方法求 π \pi π 值的完整代码如下,单线程方法仅在主函数中将其中一个线程注释掉即可。

#include <stdio.h>
#include <stdlib.h>
#ifndef __USE_GNU
#define __USE_GNU
#endif // !__USE_GNU
#include <unistd.h>
#include <sched.h>
#include <pthread.h>
#include <semaphore.h>double PI = 3.1415926535898;	//标准PI值//全局变量
int sum_dots = 1000000;	//点的总数
int sum_in_circle = 0;	//在圆内的点的总数//声明锁
pthread_mutex_t lock_sum;
pthread_mutex_t lock_in;//判断点是否在圆内
int inCircle(double x, double y) {int flag = 1;if ((x * x + y * y) <= 1.0)flag = 1;elseflag = 0;return flag;
}void* runner1() {	//将线程绑定到0号核上cpu_set_t cpuSet;CPU_ZERO(&cpuSet);CPU_SET(0, &cpuSet);sched_setaffinity(0, sizeof(cpuSet), &cpuSet);double x, y;	//随机点坐标while (1){pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}		}pthread_exit(NULL);	//退出线程
}void* runner2() {//将线程绑定到1号核上cpu_set_t cpuSet;CPU_ZERO(&cpuSet);CPU_SET(1, &cpuSet);sched_setaffinity(0, sizeof(cpuSet), &cpuSet);double x, y;	//随机点坐标while (1) {pthread_mutex_lock(&lock_sum);	//判断前,对点总数上锁if (sum_dots > 0) {sum_dots--;pthread_mutex_unlock(&lock_sum);//生成随机点 [-1,1]x = 2.0 * rand() / (double)RAND_MAX - 1;y = 2.0 * rand() / (double)RAND_MAX - 1;//如果生成点在圆中,圆内点总数+1if (inCircle(x, y)) {pthread_mutex_lock(&lock_in);sum_in_circle++;pthread_mutex_unlock(&lock_in);}}else {pthread_mutex_unlock(&lock_sum);break;}}pthread_exit(NULL);	//退出线程
}int main(){int sum_dots_p = sum_dots;	//复制总点数,作最后计算用pthread_t tid1, tid2;		//线程IDpthread_attr_t attr;		//线程属性pthread_attr_init(&attr);	//设置默认线程属性//初始化随机数发生器 srand(1);//初始化锁pthread_mutex_init(&lock_sum, NULL);pthread_mutex_init(&lock_in, NULL);//执行两个线程分别进行随机生成点pthread_create(&tid1, &attr, runner1, NULL);pthread_create(&tid2, &attr, runner2, NULL);//等待两个线程pthread_join(tid1, NULL);pthread_join(tid2, NULL);//计算结果double estimate_PI = (double)(4.0 * sum_in_circle / sum_dots_p);printf("PI: %lf\n", estimate_PI);printf("Error Value: %lf\n", estimate_PI - PI);return 0;
} 

这篇关于操作系统原理:C语言 多线程加锁 验证蒙特·卡罗(Monte Carlo)方法求π值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/631916

相关文章

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Go语言编译环境设置教程

《Go语言编译环境设置教程》Go语言支持高并发(goroutine)、自动垃圾回收,编译为跨平台二进制文件,云原生兼容且社区活跃,开发便捷,内置测试与vet工具辅助检测错误,依赖模块化管理,提升开发效... 目录Go语言优势下载 Go  配置编译环境配置 GOPROXYIDE 设置(VS Code)一些基本

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶