【算法基础 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理)

本文主要是介绍【算法基础 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 为什么需要逆元
  • 逆元的概念
    • 1.单位元
    • 2.逆元
    • 3.模乘的单位元
    • 4.模乘的逆元
  • 开始求逆元
    • 1.扩展欧几里得定理
    • 2.费马小定理


原文链接

为什么需要逆元

首先,在算法竞赛中,很多情况下会遇到数值很大的数据,这个时候,题目往往会让我们对某个数去摸,来控制数据范围。

在±*运算中,我们可以对每个数单独取模,然后再对运算之后的数取模。

但是除法比较特殊,例如: ( 40 ÷ 5 ) m o d 10 ≠ ( ( 40 m o d 10 ) ÷ ( 5 m o d 10 ) ) ) m o d 10 (40\div5)mod 10\neq((40mod 10)\div(5mod 10)))mod10 (40÷5)mod10=((40mod10)÷(5mod10)))mod10

那我们可以将其转化为乘法,就相当于:除以一个数,就是乘以一个数的倒数

这个时候就要用到逆元

逆元的概念

1.单位元

在一个集合中,对于某种运算,如果对于任何的集合元素a和元素e运算,得到还是集合元素a本身,就称e为这个运算下的单位元

  • 例如

在加法中:对任意实数a: a + e = e + a = a a + e = e + a = a a+e=e+a=a, 则e为单位元, e = 0 e = 0 e=0
在乘法中:对任意实数a: a × e = e × a = a a \times e = e \times a = a a×e=e×a=a, 则e为单位元, e = 1 e = 1 e=1
(每种运算都有自己的单位元)

2.逆元

在一个集合中,对于某种运算,如果任意两个元素的运算结果等于单位元,则称这两个元素互为逆元

  • 例如

在加法中:对任意实数a: a + − a = 0 a + -a = 0 a+a=0, 而0是加法的单位元,则-a为加法的逆元
在乘法中:对任意实数a: a × a − 1 = 1 a \times a^{-1} = 1 a×a1=1,则 a − 1 a^{-1} a1为乘法的逆元

3.模乘的单位元

对于模 n n n乘法,所有模 n n n a a a同余的数都可以表示成:
a ( m o d n ) = k n + a ( k ∈ Z ) a(mod~n)=kn+a~~(k\in Z) a(mod n)=kn+a  (kZ)
令单位元为 e ( m o d n ) e(mod~n) e(mod n),将 a ( m o d n ) a(mod~n) a(mod n) e ( m o d n ) e(mod~n) e(mod n)进行模乘运算,得到:
a ( m o d n ) × e ( m o d n ) = ( k 1 n + a ) ( k 2 n + e ) = ( k 1 k 2 n 2 + k 1 e n + k 2 a n + a e ) = ( k 1 k 2 n + k 1 e + k 2 a ) n + a e \begin{equation*} %加*表示不对公式编号 \begin{split} & a(mod~n)\times e(mod~n)\\ & = (k_1n+a)(k_2n+e)\\ & =(k_1k_2n^2+k_1en+k_2an+ae)\\ & =(k_1k_2n+k_1e+k_2a)n+ae\\ \end{split} \end{equation*} a(mod n)×e(mod n)=(k1n+a)(k2n+e)=(k1k2n2+k1en+k2an+ae)=(k1k2n+k1e+k2a)n+ae

根据单位元定义,
a ( m o d n ) × e ( m o d n ) = a ( m o d n ) a(mod~n)\times e(mod~n) = a(mod~n) a(mod n)×e(mod n)=a(mod n)

带入定义式:
( k 1 k 2 n + k 1 e + k 2 a ) n + a e = k n + a (k_1k_2n+k_1e+k_2a)n+ae = kn+a (k1k2n+k1e+k2a)n+ae=kn+a


{ k = k 1 k 2 n + k 1 e + k 2 a e = 1 \begin{cases} k = k_1k_2n+k_1e+k_2a\\ e = 1\\ \end{cases} {k=k1k2n+k1e+k2ae=1

也就是说,模乘的单位元是1

4.模乘的逆元

模乘运算中,任意整数 a ( m o d n ) a(mod~n) a(mod n)的逆元表示为:
a − 1 ( m o d n ) a^{-1}(mod~n) a1(mod n)
根据定义,满足:
a a − 1 ≡ 1 ( m o d n ) aa^{-1}\equiv 1(mod~n) aa11(mod n)

可以理解为 a a a a − 1 a^{-1} a1 n n n的作用下发生了反应,变成了1

但是,不像加减法和乘除法每个数(乘除法除0以外)都有逆元

对于每个数 a a a均有唯一的与之对应的乘法逆元 x x x,使得 a x ≡ 1 ( m o d n ) ax\equiv 1(mod~n) ax1(mod n)
逆元存在的充要条件: g c d ( a , n ) = 1 gcd(a,n)=1 gcd(a,n)=1(这个数和模数互质)

此时,在模 n n n的意义下,一个数 a a a如果有逆元 x x x,那么除以 a a a就相当于乘以 x x x

开始求逆元

如何在给定 a a a n n n的前提下给出逆元?

先在这里附上欧几里得定理

1.扩展欧几里得定理

已知整数a、b,扩展欧几里得算法可以在求得a、b的最大公约数的同时,能找到整数x、y(其中一个很可能是负数),使它们满足贝祖等式 a x + b y = g c d ( a , b ) ax + by = gcd(a,b) ax+by=gcd(a,b)

扩展欧几里得常用来求形如方程:ax + by = c 的整数通解或者特解。

等式方程 ax+by = c 是不一定有整数解x、y的
但是已知:若 c c%gcd(a,b)=0 c,则方程 a x + b y = c ax + by = c ax+by=c必定存在整数解,否则必定无解(其推导如下)。
对于最简单的情况: 对于不完全为0的非负整数 a , b , g c d ( a , b ) a,b,gcd(a, b) a,b,gcd(a,b) 表示 a , b a,b a,b的最大公约数,必定存在整数对 x , y x, y x,y满足 a × x + b × y = = g c d ( a , b ) a\times x+b\times y==gcd(a, b) a×x+b×y==gcd(a,b)。 我们一般根据欧几里算法与最大公约数的关系由最简单的情况来拓展推导方程的通解。

已知:a % gcd(a,b) == 0,b % gcd(a,b) == 0;若整数x、y为方程 ax + by = c 的一组解
则 ax % gcd(a,b) == 0,by % gcd(a,b) == 0
则 ax + by % gcd(a,b) == 0
即 c % gcd(a,b) == 0
因此 方程 ax + by = c 有解的充要条件是 c % gcd(a,b) == 0
————————————————
版权声明:本文为CSDN博主「阿阿阿安」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_40772692/article/details/81183174

  • 下面举一个例子

【例题】给定正整数 a , b a,b a,b,求满足等式 a x + b y = 1 ax+by=1 ax+by=1 x x x的最小正整数解。如果不存在,返回-1。

首先找出 a , b a,b a,b的最大公约数,令 g = g c d ( a , b ) g = gcd(a,b) g=gcd(a,b)
则,原式可以转化为:
g ( a g x + b g y ) = 1 g(\frac{a}{g}x+\frac{b}{g}y) = 1 g(gax+gby)=1
如果 a b = 1 ( a , b ∈ Z + ) ab = 1~~(a,b\in Z^+) ab=1  (a,bZ+),则 a = 1 , b = 1 a=1, b=1 a=1,b=1

所以 g = 1 g = 1 g=1

所以,只需要考虑 a , b a,b a,b互素的情况

下面给出扩展欧几里得定理的代码:

int extend_gcd(int a,int b,int &x,int & y)
{if(b == 0){x = 1;y = 0;return a;}// x,y调换传给下一次递归等价于x1 = y2int t = extend_gcd(b,a%b,y,x);//等价y1 = x2 -(a/b) * y2y -= a / b * x;return t;
}

那上面这个跟逆元有什么联系呢?
来看这道题

【例题】给定正整数 p p p a a a,求满足 a x ≡ 1 ( m o d p ) ax\equiv 1(mod~p) ax1(mod p)的最小正整数 x x x,如果不存在,返回-1

乍看上去跟上面一点关系都没有
将原式换成:
a x = k n + 1 ( k ∈ Z ) ax = kn+1~~(k\in Z) ax=kn+1  (kZ)
移项后得到
a x − k n = 1 ax-kn = 1 axkn=1
由于k是个整数,不分正负,所以可以表示为
a x + k n = 1 ax+kn = 1 ax+kn=1
于是,可表示为
a x + b y = 1 ax+by = 1 ax+by=1

ll inv(ll a, ll n){ll x, y;ExpGcd(a, n, x, y);x = (x % n + n) % n;return x;
}

2.费马小定理

b b b存在乘法逆元的充要条件是 b b b与模数 m m m互质。当模数 m m m为质数时, b m − 1 ≡ 1 ( m o d m ) b^{m-1}\equiv 1(mod~m) bm11(mod m), b m − 2 b^{m-2} bm2为b的逆元

【例题】给定素数 p p p和正整数 a a a,求满足 a x ≡ 1 ( m o d p ) ax\equiv 1(mod~p) ax1(mod p)的最小正整数 x x x,如果不存在,返回-1

a a a p p p的倍数时, a x ≡ 0 ( m o d p ) ax\equiv 0(mod~p) ax0(mod p),所以一定不存在
当不是倍数(a和p互质), a p − 1 ≡ 1 ( m o d p ) ⇒ a × a p − 2 ≡ 1 ( m o d p ) a^{p-1}\equiv 1(mod~p) \Rightarrow a\times a^{p-2}\equiv 1(mod~p) ap11(mod p)a×ap21(mod p)

此时 a p − 2 a^{p-2} ap2就是a的逆元

  • 这道题就是求的 a p − 2 a^{p-2} ap2,考的费马定理和快速幂

题目描述:给定 n n n a i , p i a_i,p_i ai,pi,其中 p i p_i pi 是质数,求 a i a_i ai p i p_i pi的乘法逆元,若逆元不存在则输出 impossible

注意:请返回在 0 ∼ p − 1 0∼p−1 0p1 之间的逆元。

#include<iostream>
#include<algorithm>
using namespace std;typedef long long LL;LL qmi(int a, int b, int p){LL res = 1 % p;while(b){if(b & 1) res = res * a % p;a = a * (LL)a % p;b >>= 1;}return res;
}int main(){int n, a, p;cin >> n;while(n--){cin >> a >> p;int res = qmi(a, p - 2, p);if(a % p) cout << res << endl;      //保证a不是p的倍数else cout << "impossible" << endl;}return 0;
}

这篇关于【算法基础 数学】快速幂求逆元(逆元、扩展欧几里得定理、小费马定理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/630576

相关文章

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列