【大数据处理技术实践】期末考查题目:集群搭建、合并文件与数据统计可视化

本文主要是介绍【大数据处理技术实践】期末考查题目:集群搭建、合并文件与数据统计可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

集群搭建、合并文件与数据统计可视化

  • 实验目的
    • 任务一:
    • 任务二:
  • 实验平台
  • 实验内容及步骤
    • 任务一:搭建具有3个DataNode节点的HDFS集群
      • 集群环境配置
        • 克隆的方式创建 Slave 节点
        • 修改主机名
        • 编辑 hosts 文件
        • 生成密钥
        • 免认证登录
        • 修改 hadoop 的配置文件
        • 编辑 workers 文件
        • 复制配置后的 hadoop 目录传到从机上
      • 启动集群
    • 任务二之实验一 :编程实现合并文件MergeFile的功能
      • 数据下载与上传至Hadoop
      • 打开 eclipse
      • 编写实现合并文件MergeFile的功能的java代码
      • 启动 Hadoop 并运行 Java 代码,合并文件
      • 查看合并后的文件
    • 任务二之实验二:对网站用户购物行为数据集进行统计分析
      • 数据预处理
      • 查看前 5 行记录,每行记录都包含 5 个字段如下:
      • 对用户的购物行为“behavior_type”进行统计,并将统计结果通过柱状图进行呈现
      • 按月对用户的购物行为“behavior\_type”进行统计,并将结果通过柱状图进行呈现
  • 总结
  • 实验报告下载

实验目的

任务一:

采用虚拟机的方式搭建一个具有3个DataNode节点的HDFS集群,将搭建过程记录在实验报告中。采用虚拟机的方式,先配置好Hadoop的主节点,然后通过克隆的方式创建Slave节点,实现3节点的HDFS集群

任务二:

实验一:使用任务一搭建的集群,编程实现合并文件MergeFile的功能:

将数据集trec06p\_sample中的文件合并成为一个文件。假设集群的用户目录为hdfs://localhost:9000/user/hadoop,将合并的结果输出到hdfs://localhost:9000/user/hadoop/merge.txt 中

实验二:使用任务一搭建的集群,对网站用户购物行为数据集进行统计分析:

对用户的购物行为“behavior\_type”进行统计,并将统计结果通过柱状图进行呈现按月对用户的购物行为“behavior\_type”进行统计,并将结果通过柱状图进行呈现

实验平台

  • 操作系统:Linux(CentOS)
  • 可视化工具:R语言
  • JDK 版本:1.8
  • Java IDE
  • Eclipse
  • Hadoop

实验内容及步骤

任务一:搭建具有3个DataNode节点的HDFS集群

集群环境配置

克隆的方式创建 Slave 节点
  • 1.采用虚拟机的方式,先配置好 Hadoop 的主节点, 此处选用之前配置好的节点作为 master 主机,然后通过克隆的方式创建 Slave 节点,实现 3 节点的 HDFS 集群
    在这里插入图片描述
修改主机名
  • 2.修改主机名,三台虚拟机都要进行的
	#给3台虚拟机设置主机名分别为master、s1和s2。#在第一台机器操作hostnamectl set-hostname master#在第二台机器操作hostnamectl set-hostname s1#在第三台机器操作hostnamectl set-hostname s2

设置完毕后需重启虚拟机:reboot

编辑 hosts 文件
  • 3.编辑 hosts 文件使三者之间能够通信,三台虚拟机都要进行的
	# hosts 配置文件是用来把主机名字映射到IP地址的方法# 编辑hosts文件,进入编辑模式 i:sudo vi /etc/hosts# 在最后添加192.168.62.128 master192.168.62.129 s1192.168.62.130 s2

在这里插入图片描述

生成密钥
    1. 在主机上生成密钥, 三台主机都操作
ssh-keygen -b 1024 -t rsa

在这里插入图片描述

免认证登录
    1. 使 master 能免认证登录其他两个主机
#进入 .ssh目录中
cd .ssh
#id_rsa:私钥 id_rsa.pub :公钥
#在master中对s1和s2进行免密登录?需要把master的公钥放到s1和s2的authorized_key文件里
# 查看mster的公钥
cat id_rsa.pub
# 在master的.ssh目录中执行
ssh-copy-id s1
ssh-copy-id s2
ssh-copy-id master
# s1和s2之间免密登录
#在s1的.ssh目录中执行
ssh-copy-id s2
#在s2的.ssh目录中执行
ssh-copy-id s1
#在master验证能否免密登录
ssh s1

在这里插入图片描述
在这里插入图片描述

修改 hadoop 的配置文件

(注意各配置文件中配置的路径要修改成自己虚拟机实际的相关环境配置路径)

#进入Hadoop的/etc目录下。注意这个路径要根据自己虚拟机中Hadoop的安装路径修改
cd /home/user/usr/demo/hadoop-3.2.4/etc/hadoop
修改hadoop-env.sh文件
vim hadoop-env.sh
#修改JAVA_HOME的路径
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.382.b05-1.el7_9.x86_64
# 修改yarn-env.sh文件的JAVA_HOME。
vim yarn-env.sh
#修改JAVA_HOME的路径
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.382.b05-1.el7_9.x86_64
# 修改core-site.xml文件
vim core-site.xml
# 添加
<configuration><property><name>fs.defaultFS</name><value>hdfs://localhost:9000</value></property><property><name>hadoop.tmp.dir</name><value>/home/user/demo/hadoop-3.2.4/tmp</value></property>
</configuration>
# 配置hdfs-site.xml
vim hdfs-site.xml
# 添加
<configuration><property><name>dfs.replication</name><value>1</value></property><property><name>dfs.permissions</name><value>false</value></property>
</configuration>
# 编辑mapred-site.xml文件
vim mapred-site.xml
<configuration><property><name>mapreduce.framework.name</name><value>yarn</value></property>
</configuration>
# 编辑yarn-site.xml文件
vim yarn-site.xml
<configuration>
<!-- Site specific YARN configuration properties --><property><name>yarn.resourcemanager.hostname</name><value>master</value></property><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property>
</configuration>
编辑 workers 文件
# 编辑 workers 文件
vim workers
# 添加
master
s1
s2
复制配置后的 hadoop 目录传到从机上
scp -r /home/user/usr/demo/hadoop-3.2.4/ s1:/home/user/usr/demo/hadoop-3.2.4/
scp -r /home/user/usr/demo/hadoop-3.2.4/ s2:/home/user/usr/demo/hadoop-3.2.4/

启动集群

  1. 在 master 上面使用start-all.sh 启动
    在这里插入图片描述

  2. 通过web端访问http://master:8088/cluster 查看当前集群的进程状态
    在这里插入图片描述

  3. 通过hadoop dfsadmin -report查看当前集群的进程状态,具有3个节点
    在这里插入图片描述

任务二之实验一 :编程实现合并文件MergeFile的功能

使用任务一搭建的集群,编程实现合并文件MergeFile的功能:将数据集trec06p_sample中的文件合并成为一个文件。假设集群的用户目录为hdfs://localhost:9000/user/hadoop,将合并的结果输出到hdfs://localhost:9000/user/hadoop/merge.txt

数据下载与上传至Hadoop

将数据集– trec06p_sample/126下载解压到虚拟机的Downloads目录下,并上传到集群的hdfs://master:9000/user/hadoop/目录下

# 解压
unzip trec06p_sample.zip -d trec06p_sample
#上传
hdfs dfs -put trec06p_sample /user/hadoop
#查看上传后的文件
hdfs dfs -ls -h /user/hadoop/trec06p_sample/126/

在这里插入图片描述

打开 eclipse

cd /usr/local/eclipse
./eclipse

编写实现合并文件MergeFile的功能的java代码

import java.io.IOException;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.*;public class MergeAllFilesInDirectory {static class MyPathFilter implements PathFilter {public boolean accept(Path path) {return true; // 接受所有文件}}public static void main(String[] args) throws IOException {// 输入目录和输出文件路径String inputPath = "hdfs://master:9000/user/hadoop/trec06p_sample/126/";String outputPath = "hdfs://master:9000/user/hadoop/merge.txt";Configuration conf = new Configuration();conf.set("fs.defaultFS", "hdfs://master:9000");conf.set("fs.hdfs.impl", "org.apache.hadoop.hdfs.DistributedFileSystem");FileSystem fsSource = FileSystem.get(URI.create(inputPath), conf);FileSystem fsDst = FileSystem.get(URI.create(outputPath), conf);// 获取目录下所有文件FileStatus[] sourceStatus = fsSource.listStatus(new Path(inputPath), new MyPathFilter());// 创建输出文件FSDataOutputStream fsdos = fsDst.create(new Path(outputPath));// 逐个读取文件并写入到输出文件中for (FileStatus status : sourceStatus) {FSDataInputStream fsdis = fsSource.open(status.getPath());byte[] data = new byte[1024];int read = -1;// 打印文件信息System.out.println("路径:" + status.getPath() + "    文件大小:" + status.getLen()+ "   权限:" + status.getPermission());while ((read = fsdis.read(data)) > 0) {fsdos.write(data, 0, read);}fsdis.close();}fsdos.close();fsSource.close();fsDst.close();}
}

启动 Hadoop 并运行 Java 代码,合并文件

在这里插入图片描述

查看合并后的文件

查看合并的结果:hdfs://localhost:9000/user/hadoop/merge.txt
通过web访问http://localhost:9870/explorer.html/user/hadoop,可以查看合并后的文件
在这里插入图片描述
通过命令行使用 cat 命令查看合并后文件内容

hdfs dfs -cat /user/hadoop/merge.txt

在这里插入图片描述

任务二之实验二:对网站用户购物行为数据集进行统计分析

使用任务一搭建的集群,对网站用户购物行为数据集进行统计分析:

  1. 对用户的购物行为“behavior_type”进行统计,并将统计结果通过柱状图进行呈现
  2. 按月对用户的购物行为“behavior_type”进行统计,并将结果通过柱状图进行呈现

数据预处理

将数据集small_user下载解压到虚拟机的Downloads目录下,并上传到集群的hdfs://master:9000/user/hadoop/目录下

unzip small_user.zip //解压
head -5 small_user.csv //查看前几行

在这里插入图片描述

查看前 5 行记录,每行记录都包含 5 个字段如下:

  • user_id(用户id)
  • item_id(商品id)
  • behaviour_type(包括浏览、收藏、加购物车、购买,对应取值分别是1、2、3、4)
  • user_geohash(用户地理位置哈希值,有些记录中没有这个字段,且实验中不需要用到,后续把这个字段全部删除)
  • item_category(商品分类)
  • time(该记录产生时间)
head -5 small_user.csv

在这里插入图片描述

对用户的购物行为“behavior_type”进行统计,并将统计结果通过柱状图进行呈现

//首先在集群中安装R语言,然后通过运行下面R代码进行统计与可视化
# 读取数据
data <- read.csv("/home/user/Downloads/small_user.csv")# 统计用户行为类型
behavior_counts <- table(data$behavior_type)# 转换成数据框
behavior_data <- as.data.frame(behavior_counts)
names(behavior_data) <- c("Behavior_Type", "Count")# 绘制柱状图
library(ggplot2)ggplot(behavior_data, aes(x = factor(Behavior_Type), y = Count)) +
geom_bar(stat = "identity", fill = "gray", width = 0.1) +  # 调整柱子宽度为0.5
labs(title = "User Behavior Count", x = "Behavior Type", y = "Count") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1))

在这里插入图片描述

从上图可以得到:大部分消费者行为仅仅只是浏览。只有很少部分的消费者会购买商品。

按月对用户的购物行为“behavior_type”进行统计,并将结果通过柱状图进行呈现

# 读取数据
data <- read.csv("/home/user/Downloads/small_user.csv")# 提取月份信息
data$month <- substr(data$time, 6, 7)# 使用ggplot绘制柱状图
library(ggplot2)ggplot(data, aes(x = factor(behavior_type), fill = factor(month), color = factor(month))) +
geom_bar(position = "dodge", width = 0.1) +
labs(title = "每月用户行为统计", x = "behavior_type", y = "count") +
theme_minimal() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
scale_color_manual(values = c("01" = "red", "02" = "blue")) +
guides(color = FALSE) +
facet_grid(. ~ month)

在这里插入图片描述

总结

本次实验深入探索了HDFS集群搭建及大数据处理技术的应用。成功地搭建了具有三个DataNode节点的HDFS集群,通过两种方式实现了该目标。在文件合并和统计分析实验中,我们编程实现了文件合并功能,并成功输出到HDFS指定路径。针对网站用户购物行为数据集,我们对用户行为进行了全面的统计分析,并通过柱状图清晰展现了购物行为的分布情况,为后续数据挖掘提供了可视化支持。这次实验不仅加深了对HDFS集群搭建的理解,也锻炼了在大数据环境下进行文件操作和数据分析的能力。未来的工作将进一步探索大数据技术,以更广泛的数据集和更复杂的分析挑战来拓展这些技能。

实验报告下载

下载

这篇关于【大数据处理技术实践】期末考查题目:集群搭建、合并文件与数据统计可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/630065

相关文章

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参