Tensorflow 入门基础——向LLM靠近一小步

2024-01-21 10:04

本文主要是介绍Tensorflow 入门基础——向LLM靠近一小步,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

进入tensflow的系统学习,向LLM靠拢。

目录

  • 1. tensflow的数据类型
    • 1.1 数值类型
    • 1.2 字符串类型
    • 1.3 布尔类型的数据
  • 2. 数值精度
  • 3. 类型转换
    • 3.1 待优化的张量
  • 4 创建张量
    • 4.1 从数组、列表对象创建
    • 4.2 创建全0或者1张量
    • 4.3 创建自定义数值张量
  • 5. 创建已知分布的张量(正态和均匀分布)
  • 6 创建序列
  • 参考资料

1. tensflow的数据类型

1.1 数值类型

数值类型的张量是tensorflow主要的数据载体,根据维度数来区分,可分为:

  • 标量Scalar:单个实数,如1,2,3,4等,维度数为0,shape为[]
  • 向量Vector:n个实数的有序集合,如[1,2,5,62,21]等,维度为1,长度不定,shape为[n]
  • 矩阵Matrix:n行m列实数的有序集合,如[[1,23],[2,32],[5,23]]的矩阵,维度数为2,每个维度上长度不定,shape为[n,m]
  • 张量Tensor:所有维度数dim >2的数据统称为张量。张量的每个维度也作为轴Axis,一般维度代表了具体的业务含义,例如shape的张量[2,32,32,3]的张量共有4维,如果表图片数据,每个维度分别代表图片数量、图片高度、图片宽度、图片通道数,其中2代表了2张图片,32代表了高,宽均为32,3代表了RGB的3个通道。

在tensorflow中,一般将标量、向量、矩阵也都统称为张量,不作区分需要根据张量的维度数和形状自行判断。

  1. 创建一个标量,并查看数据类型
a=1.1 ##python的普通常量
type(a)
import tensorflow as tf
b=tf.constant(2.2) #tf的张量
type(b)

结果:(张量只能通过tf的函数去创建,不能使用python的普通语法创建)
在这里插入图片描述
2. 创建一个向量并展示向量信息

c=tf.constant([1,23,4,5,56])
c

结果:(id是tensorflow中内部索引的对象编号,shape表示张量的形状,dtype代表张量数职的精度值,张量numpy()方法可以返回Numpy.array类型的数据,方便到处数据到系统其他模块)
在这里插入图片描述

#将数据导出为numpy的array类型
c.numpy()

在这里插入图片描述
3. 与标量不同,向量的定义碧玺通过list传给tf.constant() 函数,例如创建一个和多个元素的向量:

##将一个元素的list转换为张量
d=tf.constant([1.2])

在这里插入图片描述

##多个元素的list转换为张量
e=tf.constant([1.2,13,14,151,15,15])

在这里插入图片描述
4. 创建矩阵张量原理同list

#创建矩阵张量
f=tf.constant([[1,2,3,4],[5,6,7,8]])
f

在这里插入图片描述

1.2 字符串类型

TF除了支持数值类型的张量之外,还支持字符串类型的数据,例如在表示图片数据时,可以先记录图片的路径字符串,再通过预处理函数根据路径读取图片张量。

  1. 创建字符串张量
a=tf.constant('hello,DEEP learning!')
a

在这里插入图片描述

  1. tf还提供了一些2字符串类型的工具函数,如小写化lower()、拼接join()、长度length()、切分split()等。
tf.strings.lower(a) #小写化字符串

在这里插入图片描述
但是在tf中最常用的还是数字类型的数据,因此字符类型的数据的函数不做过多赘述。

1.3 布尔类型的数据

为了方便表达比较运算操作的结果,tf还支持布尔类型的张量,布尔类型张量只需要传入python语言的布尔类型数据,转换成为内部布尔类型即可。

  1. 创建布尔类型的张量
a=tf.constant(True)
a

在这里插入图片描述
2. 创建布尔类型的向量

b=tf.constant([True,False])
b

在这里插入图片描述
3. tf的布尔类型和python的布尔类型并不等价,不能通用

a=tf.constant(True)
a is True

在这里插入图片描述

2. 数值精度

对于数值类型的张量,可以保存为不同字节长度的精度,如浮点数3.14即可以保存为16位(bit)长度,也可以保存为32位甚至64位的精度。位越长,精度越高,同时占用的空间也就越大,常用的精度类型有tf.int16、tf.int32、tf.int64、tf.int64、tf.float16、tf.float32、tf.float64等,其中tf.float64即为tf.double。

tf.constant(123456789,dtype=tf.int16)
tf.constant(123456789,dtype=tf.int32)

在这里插入图片描述
可以看到,保存精度过低,数据123456789发生了溢出,得到了错位的结果,一般使用tf.int32、tf.int64精度,对于浮点数,高精度的张量可以表示更精准的数据,例如:采用tf.float32精度2保存’pai’ 时,实际保存为的数据位3.1415927.

import numpy as np
np.pi
tf.constant(np.pi,dtype=tf.float32)

在这里插入图片描述
如果采用tf.float64精度保存,则能够获得更高的精度,实现如下:

tf.constant(np.pi,dtype=tf.float64)

在这里插入图片描述

3. 类型转换

系统的每个模块使用数据类型,数值类型可能各不相同,对于不符合要要求的张量的类型及精度,需要通过tf.cast函数进行转换,例如:

a=tf.constant(np.pi,dtype=tf.float16)
tf.cast(a,tf.double)

在这里插入图片描述
进行类型转换时,需要保证转换操作的合法性,例如将高精度的张量转换为低精度的张量时,可能发生数据溢出隐患:

a=tf.constant(123456789,dtype=tf.int32)
tf.cast(a,tf.int16)

在这里插入图片描述
布尔类型与整型之间互信转型是合法的,是比较常见的操作:

a=tf.constant([True,False])
tf.cast(a,tf.int32)

在这里插入图片描述
一般末日0表示false,1表示True,在tf中,将非0数字,都视为True,例如:

a=tf.constant([-1,0,1,2])
tf.cast(a,tf.bool)

在这里插入图片描述

3.1 待优化的张量

为了区分需要计算梯度信息的张量与不需要计算梯度信息的张量,TF增加了一种专门的数据类型来支持梯度信息的记录:tf.Variable。tf.Variable类型在普通的张量类型的基础上增加了name、trainable等属性来支持计算图的构建。由于梯度运算会消耗大量的计算资源,而且会自动更新相关参数,对于不需要优化的张量,如何神经网络的输入X,不需要通过tf.Variable封装;相反,对于需要计算梯度优化的张量,如神经网络层的W和b,需要通过tf.Variable包裹以便TF跟踪梯度信息。
例如tf.Variable() 函数可以将普通张量转换为待优化的张量:

d=tf.constant([-1,0,1,2])#创建tf张量
b=tf.Variable(d)#转换为variable类型

在这里插入图片描述
其中name和trainable是variable特有的属性,name属性用于命名计算图中的变量,这趟命名体系是TF内部维护的,一般不需要用户关注name属性,trainable属性表示当前张量是否被优化,创建variable对象时是默认启用优化标志,可以设置trainable=false来设置张量不需要优化。
除了通过普通的方式创建variable,就可以之间创建,例如:

a=tf.Variable([1,2],[3,4])#直接创建variable张量
a

在这里插入图片描述

4 创建张量

创建tf中,可以通过多种方式创建张量,如从python列表对象创建,从numpy数组创建,或者创建采样自某种已知分布的张量等。

4.1 从数组、列表对象创建

Numpy array 数据和python list 列表是python程序中间非常重要的数据载体,很多数据通过python语言将数据加载至array 或者 list,再转化为Tensor类型,通过TF运算处理后导入到array或者list。方便其他模块调用。
通过tf.convert_to_tensor函数可以创建新Tensor,并保存在python list 对象或者numpy array 对象中的数据导入到Tensor:

tf.convert_to_tensor([1,2.])

在这里插入图片描述

import numpy as np
tf.convert_to_tensor(np.array([[1,2],[3,4]]))

在这里插入图片描述
注意,numpy 浮点数数组默认使用64位精度保存数组,转换到tensor类型时精度位tf.float64,可以在需要时将其转换为tf.float32类型。
实际上,tf.constant() 和tf.convert_to_tensor() 都能够自动地把numpy 数组或者python列表数据类型转化为Tensor类型。

4.2 创建全0或者1张量

将张量创建为全0或者全1数据是非常常见的张量初始化手段。考虑线性变换y=wx+b,将权值权值矩阵w初始化为全1矩阵,偏置b初始化为全0的向量,此时线性变化层输出y=x,因此是一种比较好的层初始化状态,通过tf.zero() 和 tf.ones() 即可创建任意形状,且内容全0或者全1的张量。创建全0和1的标量:

tf.zeros([]) #创建全0的标量
tf.ones([]) #创建全1的标量

在这里插入图片描述
创建全0和全1的向量:

tf.zeros([1]) #创建全0的向量
tf.ones([1]) #创建全1的向量

在这里插入图片描述
通过tf.zeros_like,tf.ones_like 可以方便地新建与某个张量shape 一致,且内容为全0或全1的张量。例如创建一张张量A形状一样的全0张量:

a=tf.ones([2,3])
tf.zeros_like(a)

在这里插入图片描述

a=tf.zeros([3,2])
tf.ones_like(a)

在这里插入图片描述
tf. *_like 是一系列的便捷函数,可以通过tf.zero(a.shape)等方式实现。

4.3 创建自定义数值张量

除了初始化为全0,或者全1的张量之外,有时也需要全部初始化为某个自定义数值的张量,例如将张量的数值全量初始化为-1等。
通过tf.fill(shape,value),可以创建全自定义数值value的张量,形状有shape参数制定。例如:

  • 创建所有元素为-1的标量:
tf.fill([],-1) #创建-1的标量

在这里插入图片描述

  • 创建所有元素为-1的向量
tf.fill([1],-1)#创建-1的向量

在这里插入图片描述

  • 创建所有元素为99的向量
tf.fill([2,2],99)#创建2行2列,元素全为99的矩阵

在这里插入图片描述

5. 创建已知分布的张量(正态和均匀分布)

正态分布和均匀分布是常见的分布之一,通过tf.random.normal(shape,mean=0.0,stddev=1.0) 可以创建形状为shape,均值mean,标准差为stddev的正态分布N(mean,stddev^3)。例如,创建均值为0,标准差1的正态分布:

tf.random.normal([2,2])

在这里插入图片描述
创建均值为1,标准差为2的正态分布

tf.random.normal([2,2],mean=1,stddev=2)

在这里插入图片描述
通过tf.random.uniform(shape,minval=0,maxval=none,dtype=tf.float32)可以创建采样自[minval,maxval]区间的均匀分布的张量。例如:

tf.random.uniform([2,2])#创建采样自区间[0,1],shape=[2,2]的矩阵:

在这里插入图片描述
创建采样区间在[0.10],shape为[2,2]的矩阵:

tf.random.uniform([2,2])

在这里插入图片描述
如果需要均匀采样整型类型的数据,就必须指定采样区间最大值maxval参数,同时指定数据类型为tf.int*类型:

tf.random.uniform([2,2],maxval=100,dtype=tf.int32)#创建采样自[0.100]均匀缝补的整形矩阵

在这里插入图片描述

6 创建序列

如果需要快速创建序列,可以使用range( x,delta=1)函数,创建[0,x),步长为delta的整型序列

tf.range(10)#创建步长为1,0-10的数据序列

在这里插入图片描述

tf.range(10,delta=2)#创建步长为2,0-10的数据序列

在这里插入图片描述
创建[2,10),步长为2的序列:

tf.range(2,10,delta=2)

在这里插入图片描述

参考资料

  • TensorFlow深度学习

这篇关于Tensorflow 入门基础——向LLM靠近一小步的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/629166

相关文章

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

史上最全MybatisPlus从入门到精通

《史上最全MybatisPlus从入门到精通》MyBatis-Plus是MyBatis增强工具,简化开发并提升效率,支持自动映射表名/字段与实体类,提供条件构造器、多种查询方式(等值/范围/模糊/分页... 目录1.简介2.基础篇2.1.通用mapper接口操作2.2.通用service接口操作3.进阶篇3

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列