浪花 - 主页性能优化

2024-01-21 04:52
文章标签 优化 性能 主页 浪花

本文主要是介绍浪花 - 主页性能优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、缓存

1. 为什么用缓存?

2. 缓存的实现方式

3. Redis

4. 使用 Spring Data Redis 中操作 Redis

5. 自定义 RedisTemplate(配置)

 6. 主页推荐用户查询使用缓存

 7. 对比查询速度

 8. 缓存预热

二、定时任务

1. Spring Scheduler

2. 其他


一、缓存

1. 为什么用缓存?

  • 数据量大查询慢,用缓存先读取部分数据保存到读写性能更快的介质中(比如内存)

2. 缓存的实现方式

  • 分布式缓存:Redis、Memcache 等
  • 单机缓存:Ehcache、Caffeine(Java 内存缓存,高性能)、Google Guava
  • 单机缓存的缺点:数据不一致

3. Redis

  • Remote Dictionary Server(远程词典服务器)
  • 基于内存的高性能 NoSQL 数据库
  • key - value 存储系统
  • Redis 的数据结构:String、Set、Map、Hash、SortedSet

4. 使用 Spring Data Redis 中操作 Redis

  • Spring Data:通用数据访问框架,定义了一组增删改查的框架,包括对操作各种数据库的集成
  • 使用步骤参考:浪花 - 单机登录升级为分布式 Session 登录-CSDN博客
  • SpringDataRedis 快速入门

    • 引入 spring-boot-starter-data-redis 依赖
    • application.yml 配置 Redis 信息
    • 注入 RedisTemplate
      • 调用方法操作 Redis 数据库
      • 调用 redisTemplate 中的 API 获取操作指定数据类型的对象 optForValue()
  • String Redis Template
    • 手动序列化
    • 将数据存入 Redis
    • 取出数据
    • 手动反序列化
/*** Redis 操作测试* @author 乐小鑫* @version 1.0*/
@SpringBootTest
public class RedisTest {@Resourceprivate RedisTemplate redisTemplate;@Testvoid test() {ValueOperations valueOperations = redisTemplate.opsForValue();// 增valueOperations.set("ghostString", "dog");valueOperations.set("ghostInt", 1);valueOperations.set("ghostDouble", 2.0);User user = new User();user.setId(1L);user.setUsername("ghost");valueOperations.set("ghostUser", user);// 查Object ghost = valueOperations.get("ghostString");Assertions.assertTrue("dog".equals((String) ghost));ghost = valueOperations.get("ghostInt");Assertions.assertTrue(1 == (Integer) ghost);ghost = valueOperations.get("ghostDouble");Assertions.assertTrue(2.0 == (Double) ghost);System.out.println(valueOperations.get("ghostUser"));valueOperations.set("ghostString", "dog");redisTemplate.delete("ghostString");}
}

5. 自定义 RedisTemplate(配置)

  • 原生提供的序列化器存储对象时序列化有问题,自定义 RedisTemplate 实现存储 String 类型的 key
/*** RedisTemplate 配置* @author 乐小鑫* @version 1.0*/
@Configuration
public class RedisTemplateConfig {@Beanpublic RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory connectionFactory) {RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();redisTemplate.setConnectionFactory(connectionFactory);redisTemplate.setKeySerializer(RedisSerializer.string());return redisTemplate;}
}

6. 主页推荐用户查询使用缓存

  • 不同用户看到的推荐列表不同
  • 设计缓存 key
    • 在每个键前面加上系统 / 模块 / 业务 / 功能 的前缀,以区分不同业务的缓存
    • Redis 内存不能无限增加,一定要设置过期时间!!如果快到限制值了,会开启 Redis 的自动淘汰机制,可能会把重要数据清除掉

直接使用单层的 key 作为键可能会对其他业务产生影响,例如以 username 为 key,其他业务可能也用 username 为 key,用的是同一台 Redis 服务器时会影响其他业务的数据。

设计缓存首先的原则是不要和其他 key 发生冲突

  • 推荐用户时先查询缓存中是否有已经缓存好的用户
    • 有缓存:直接返回缓存中的数据
    • 无缓存:先查询数据库,将数据库中的缓存写入 Redis,再返回数据
    • 注意缓存穿透:数据库中没有要查询的数据,但是客户端一直不停发送请求查询数据,缓存中没有,查询就会打到数据库,不停查询缓存中都没有数据,就会不停执行数据库的查询,占用数据库资源,可能会把数据库搞崩
    • 解决缓存穿透:缓存空值,即如果数据库中没有数据,就向 Redis 中缓存一个空值,下次再来查询,查询打到 Redis,发现有一个空值就会直接空值,不再查询数据库
/*** 用户推荐* @param request* @return 用户列表*/@GetMapping("/recommend")public BaseResponse<Page<User>> recommendUsers(long pageSize, long pageNum, HttpServletRequest request) {log.info("推荐用户列表");ValueOperations valueOperations = redisTemplate.opsForValue();User loginUser = userService.getLoginUser(request);String key = String.format("langhua:user:recommend:%s", loginUser.getId());Page<User> userPage = (Page<User>) valueOperations.get(key);// 查缓存,有直接返回缓存数据if (userPage != null) {return ResultUtils.success(userPage);}// 没有缓存数据,才查询数据库QueryWrapper<User> queryWrapper = new QueryWrapper<>();userPage = userService.page(new Page<>((pageNum - 1) * pageSize, pageSize), queryWrapper);// 查询所有用户// 将查询出来的数据写入缓存try {valueOperations.set(key,userPage);} catch (Exception e) {log.error("redis key set error", e);}return ResultUtils.success(userPage);}

7. 对比查询速度

  • 第一次查询:缓存中没有数据,请求打到数据库,1.13 秒

  • 后续查询:缓存中已经缓存了用户列表数据,直接返回缓存数据,26.85 毫秒,性能优化显著

8. 缓存预热

  • 为什么要缓存预热?

场景分析:当缓存里没有数据时,第一个用户进来需要查询数据库才能看到响应数据,页面响应时间较久,对有些用户不友好

解决方案:在所有用户进入之前预先缓存好数据,程序员自己加载缓存,而不是等到用户进入再触发

  • 优点:每个用户来访问响应都很快,提升用户体验
  • 缺点
    • 增加开发成本
    • 预热时机需要谨慎选择:预热的时机太早可能会缓存到错误数据或老数据
    • 需要占用额外空间

注意❗在分析一个技术的优缺点时,要从整个项目从 0 到 1 的整个软件生命周期去考虑(需求分析开始到项目部署上线和维护)

  • 缓存预热的实现
    • 定时任务
    • 手动触发

二、定时任务

使用定时任务,每天刷新所有用户的推荐列表(缓存预热)

  1. 缓存预热的意义(新增数据少、总数据量大)
  2. 缓存占用空间不能太大,需要给其他缓存预留空间
  3. 缓存数据的周期(根据业务需求来选择)

1. Spring Scheduler

  • SpringBoot 默认已经整合,直接使用即可
  • 使用步骤
    • 主类(程序入口)添加注解开启定时任务支持:@EnableScheduling
    • 要定时执行的方法添加 @Scheduled 注解
    • 通过 cron 表达式指定定时任务执行周期:在线Cron表达式生成器 (qqe2.com)
    •  运行项目等待定时任务执行
/*** 缓存预热定时任务* @author 乐小鑫* @version 1.0*/
@Component
@Slf4j
public class PreCacheUser {@Resourceprivate RedisTemplate redisTemplate;@Resourceprivate UserService userService;List<Long> mainUserList = Arrays.asList(3L);// 重要用户列表,为该列表的用户开启缓存预热@Scheduled(cron = "0 5 21 ? * * ")public void doPreCacheUser() {// 查出用户存到 Redis 中for (Long userId : mainUserList) {QueryWrapper<User> queryWrapper = new QueryWrapper<>();Page<User> userPage = userService.page(new Page<>(1, 20), queryWrapper);// 查询所有用户String key = String.format("langhua:user:recommend:%s", userId);ValueOperations valueOperations = redisTemplate.opsForValue();// 将查询出来的数据写入缓存try {valueOperations.set(key,userPage,30000, TimeUnit.MILLISECONDS);} catch (Exception e) {log.error("redis key set error", e);}}}
}
  • 定时任务添加缓存成功✔ 

2. 其他

  • Quartz:独立于 Spring 的定时任务框架
  • XXL-Job 等分布式任务调度平台

这篇关于浪花 - 主页性能优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/628412

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

MySQL中like模糊查询的优化方案

《MySQL中like模糊查询的优化方案》在MySQL中,like模糊查询是一种常用的查询方式,但在某些情况下可能会导致性能问题,本文将介绍八种优化MySQL中like模糊查询的方法,需要的朋友可以参... 目录1. 避免以通配符开头的查询2. 使用全文索引(Full-text Index)3. 使用前缀索

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

Java的"伪泛型"变"真泛型"后对性能的影响

《Java的伪泛型变真泛型后对性能的影响》泛型擦除本质上就是擦除与泛型相关的一切信息,例如参数化类型、类型变量等,Javac还将在需要时进行类型检查及强制类型转换,甚至在必要时会合成桥方法,这篇文章主... 目录1、真假泛型2、性能影响泛型存在于Java源代码中,在编译为字节码文件之前都会进行泛型擦除(ty

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.