Linux设备管理模型-02:sysfs

2024-01-21 00:12
文章标签 linux 02 模型 管理 设备 sysfs

本文主要是介绍Linux设备管理模型-02:sysfs,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • sysfs
  • 1 使用sysfs控制GPIO
  • 2 sysfs编程
    • 2.1 完善sysfs属性文件的读写操作

上一篇文: 设备管理模型中的基础数据结构

sysfs

sysfs是用于导出内核对象的文件系统,它是一个基于ram的文件系统,最初基于ramfs。
sysfs通常挂载在/sys目录下。它提供了一种层次结构来表示设备、驱动程序和总线之间的关系,以及设备属性的信息。用户和管理者可以使用sysfs来查询和配置设备的状态和属性。

如果定义了CONFIG_SYSFS,那么sysfs总是编译进内核。

~ # ls /sys
block     class     devices   fs        module
bus       dev       firmware  kernel    power

sysfs中的目录树是由kobject和kset组织而成的。
对于每一个注册到系统的kobject,都会在sysfs中创建一个对应的目录,他是kobject父对象的子目录,以此像用户空间表达内部对象层级。
相同的kset下有多个kobject,kset又由链表连接,他们共同组成了这个目录树。

一个kset下的kobject可以有相同的ktype,也可以不同。

sys目录下的各目录作用如下:

目录用途
block
bus包含内核中各种总线类型的扁平化布局,每个目录下都分别包含devicesdrivers 两个目录。
class
dev包含 2 个目录: char 和 block,它们里面是 <major>:<minor> 格式指向设备的符号链。
devices包含表示设备树的一个文件系统,它直接映射至内部内核设备树,即 struct device 层级
firmware包含硬件固件相关信息
fs包含针对一些文件系统的目录,每个需要导出属性的文件系统都必须在/fs下
kernel包含内核信息和控制接口
module
power

1 使用sysfs控制GPIO

make menuconfig 确保 Device Drivers > LED Support 没有 LED Class Support(如果使用LED做实验) , 并且Device Drivers > GPIO Support 已使能。

GPIO1_0 : (1 - 1) * 32 + 0 = 0
如下命令导出GPIO1_0
echo 0 > /sys/class/gpio/export

GPIOX_N引脚:(X - 1) * 32 + N

[root@qemu_imx6ul:/sys/class/gpio]# ls
export       gpiochip0    gpiochip32   gpiochip96
gpio0        gpiochip128  gpiochip64   unexport
[root@qemu_imx6ul:/sys/class/gpio]# ls gpio0
active_low  direction   power       uevent
device      edge        subsystem   value

echo out > /sys/class/gpio/gpio0/direction
echo 1 > /sys/class/gpio/gpio0/value

2 sysfs编程

2.1 完善sysfs属性文件的读写操作

上一篇文kset例程中只有kset和kobject的目录组织关系,它还需要能够读写控制才比较完整。本节基于该例程完善了kobject在sysfs的各种行为。

在1.2节的例程中仅定义了kobj_type的release方法,属性的通用读写操作也在kobj_type中:

#include <linux/kobject.h>
#include <linux/string.h>
#include <linux/sysfs.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/init.h>MODULE_LICENSE("GPL");struct foo_obj {struct kobject kobj;int foo;int baz;int bar;
};
/* 从类型为kobj的结构体成员的指针x,获取该foo_obj类型结构体的指针 */
#define to_foo_obj(x) container_of(x, struct foo_obj, kobj)/* 自定义属性,继承自attribute */
struct foo_attribute {struct attribute attr; /* 包含name 和 mode 成员变量*/ssize_t (*show)(struct foo_obj *foo, struct foo_attribute *attr, char *buf);ssize_t (*store)(struct foo_obj *foo, struct foo_attribute *attr, const char *buf, size_t count);
};
#define to_foo_attr(x) container_of(x, struct foo_attribute, attr)/** 每当与已注册kobject关联的sysfs文件上的show函数被用户调用时,这个函数就会被sysfs调用。* 需要把传入的kobj转置为自己的kobj子类,然后调用这个特定对象的show函数 */
static ssize_t foo_attr_show(struct kobject *kobj,struct attribute *attr,char *buf)
{struct foo_attribute *attribute;struct foo_obj *foo;attribute = to_foo_attr(attr);foo = to_foo_obj(kobj);if (!attribute->show)return -EIO;return attribute->show(foo, attribute, buf);
}/* 通过sysfs写入属性文件时被调用 */
static ssize_t foo_attr_store(struct kobject *kobj,struct attribute *attr,const char *buf, size_t len)
{struct foo_attribute *attribute;struct foo_obj *foo;attribute = to_foo_attr(attr);foo = to_foo_obj(kobj);if (!attribute->store)return -EIO;return attribute->store(foo, attribute, buf, len);
}/* Our custom sysfs_ops that we will associate with our ktype later on */
static const struct sysfs_ops foo_sysfs_ops = {.show = foo_attr_show,.store = foo_attr_store,
};/* 属性的读取函数,每个属性可以有不同的读取 */
static ssize_t var_show(struct foo_obj *foo_obj, struct foo_attribute *attr,char *buf)
{int var;if (strcmp(attr->attr.name, "len_attr") == 0)var = foo_obj->foo;else if (strcmp(attr->attr.name, "derict_attr") == 0)var = foo_obj->baz;elsevar = foo_obj->bar;return sprintf(buf, "%d\n", var);
}
/* 属性的写入函数,每个属性可以有不同的写入 */
static ssize_t var_store(struct foo_obj *foo_obj, struct foo_attribute *attr,const char *buf, size_t count)
{int var, ret;ret = kstrtoint(buf, 10, &var);if (ret < 0)return ret;if (strcmp(attr->attr.name, "len_attr") == 0)foo_obj->foo = var;else if (strcmp(attr->attr.name, "derict_attr") == 0)foo_obj->baz = var;elsefoo_obj->bar = var;return count;
}
/* Sysfs attributes cannot be world-writable.   * __ATTR(name, mode, show, store) : 生成一个包含属性的结构体,以及相关的访问函数。* 这样,可以将属性与对应的读写函数关联起来,并在 sysfs 中创建相应的属性文件,用于读取或写入属性值。*/
static struct foo_attribute foo_attribute =__ATTR(len_attr, 0664, var_show, var_store);
static struct foo_attribute baz_attribute =__ATTR(derict_attr, 0664, var_show, var_store);
static struct foo_attribute bar_attribute =__ATTR(depth_attr, 0664, var_show, var_store);/** Create a group of attributes so that we can create and destroy them all* at once.*/
static struct attribute *foo_default_attrs[] = {&foo_attribute.attr,&baz_attribute.attr,&bar_attribute.attr,NULL,	/* need to NULL terminate the list of attributes */
};static void foo_release(struct kobject *kobj)
{struct foo_obj *foo;foo = to_foo_obj(kobj);kfree(foo);
}/* 可以定义所属kset的kobject的一些行为到default_attrs和sysfs_ops属性中 */
static struct kobj_type foo_ktype = {.sysfs_ops = &foo_sysfs_ops,.release = foo_release,.default_attrs = foo_default_attrs,
};static struct kset *example_kset;
static struct foo_obj *foo_obj;
static struct foo_obj *bar_obj;
static struct foo_obj *baz_obj;static struct foo_obj *create_foo_obj(const char *name)
{struct foo_obj *foo;int retval;/* allocate the memory for the whole object */foo = kzalloc(sizeof(*foo), GFP_KERNEL);if (!foo)return NULL;/* 初始化kobject之前先确定所属kset */foo->kobj.kset = example_kset;/* 初始化kobject添加到kernel中,并关联ktype,会在sysfs中创建名为name的kobject文件夹* 第三个参数是父kobj,由于已确定kset,写为NULL */retval = kobject_init_and_add(&foo->kobj, &foo_ktype, NULL, "%s", name);if (retval) {kobject_put(&foo->kobj);return NULL;}/* 通知用户空间有一个新的内核对象(kobject)已经被添加到 sysfs 中。* 这对于用户空间的监控和管理工具来说是很有用的 */kobject_uevent(&foo->kobj, KOBJ_ADD);return foo;
}static void destroy_foo_obj(struct foo_obj *foo)
{kobject_put(&foo->kobj);
}static int __init example_init(void)
{/* 创建一个名为 "kset_example" 的kset, 路径在/sys/kernel/ */example_kset = kset_create_and_add("kset_example", NULL, kernel_kobj);if (!example_kset)return -ENOMEM;/* 在已定义的kset下新增kobject */foo_obj = create_foo_obj("foo");if (!foo_obj)goto foo_error;bar_obj = create_foo_obj("bar");if (!bar_obj)goto bar_error;baz_obj = create_foo_obj("baz");if (!baz_obj)goto baz_error;return 0;baz_error:destroy_foo_obj(bar_obj);
bar_error:destroy_foo_obj(foo_obj);
foo_error:kset_unregister(example_kset);return -EINVAL;
}static void __exit example_exit(void)
{destroy_foo_obj(baz_obj);destroy_foo_obj(bar_obj);destroy_foo_obj(foo_obj);kset_unregister(example_kset);
}MODULE_AUTHOR("LUKEKE");        // 作者
MODULE_DESCRIPTION("kset test"); // 描述
MODULE_ALIAS("kset Learn");   // 别名module_init(example_init);
module_exit(example_exit);

测试解果如下

[root@qemu_imx6ul:/sys/kernel/kset_example]# ls
bar  baz  foo
[root@qemu_imx6ul:/sys/kernel/kset_example]# ls baz
depth_attr   derict_attr  len_attr
[root@qemu_imx6ul:/sys/kernel/kset_example/foo]# cd foo & ls
depth_attr   derict_attr  len_attr
[root@qemu_imx6ul:/sys/kernel/kset_example/foo]# echo 5 > depth_attr 
[root@qemu_imx6ul:/sys/kernel/kset_example/foo]# cat depth_attr 
5
[root@qemu_imx6ul:/sys/kernel/kset_example/foo]# echo 3 > derict_attr 
[root@qemu_imx6ul:/sys/kernel/kset_example/foo]# cat derict_attr 
3

除了上述通过kobject_init_and_add设置ktype的方式创建属性文件,也可以在kobject_create_and_add("my_kobject", kernel_kobj)之后使用sysfs_create_files(my_kobject, attrs)创建属性文件。

属性读写的简单描述如下图所示:
sysfs属性文件读写

这篇关于Linux设备管理模型-02:sysfs的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/627811

相关文章

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

Linux中修改Apache HTTP Server(httpd)默认端口的完整指南

《Linux中修改ApacheHTTPServer(httpd)默认端口的完整指南》ApacheHTTPServer(简称httpd)是Linux系统中最常用的Web服务器之一,本文将详细介绍如何... 目录一、修改 httpd 默认端口的步骤1. 查找 httpd 配置文件路径2. 编辑配置文件3. 保存

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Spring中管理bean对象的方式(专业级说明)

《Spring中管理bean对象的方式(专业级说明)》在Spring框架中,Bean的管理是核心功能,主要通过IoC(控制反转)容器实现,下面给大家介绍Spring中管理bean对象的方式,感兴趣的朋... 目录1.Bean的声明与注册1.1 基于XML配置1.2 基于注解(主流方式)1.3 基于Java

基于Python+PyQt5打造一个跨平台Emoji表情管理神器

《基于Python+PyQt5打造一个跨平台Emoji表情管理神器》在当今数字化社交时代,Emoji已成为全球通用的视觉语言,本文主要为大家详细介绍了如何使用Python和PyQt5开发一个功能全面的... 目录概述功能特性1. 全量Emoji集合2. 智能搜索系统3. 高效交互设计4. 现代化UI展示效果