【原创】(七)Linux内存管理 - zoned page frame allocator - 2

2024-01-20 23:08

本文主要是介绍【原创】(七)Linux内存管理 - zoned page frame allocator - 2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

背景

  • Read the fucking source code! --By 鲁迅
  • A picture is worth a thousand words. --By 高尔基

说明:

  1. Kernel版本:4.14
  2. ARM64处理器,Contex-A53,双核
  3. 使用工具:Source Insight 3.5, Visio

1. 概述

本文将分析Buddy System
Buddy System伙伴系统,是通过将物理内存划分为页面来进行管理的系统,支持连续的物理页面分配和释放。此外,使用与碎片相关的算法来确保最大的连续页面。

先通过一个例子大体介绍一下原理吧:
空闲的物理页框按大小分组成0~MAX_ORDER个链表,每个链表存放页框的大小为2的n次幂,其中n在0 ~ MAX_ORDER-1中取值。

假设请求分配2^8 = 256个页框块:

  1. 检查n = 8的链表,检查是否有空闲块,找到了则直接返回;
  2. 没有找到满足需求的,则查找n = 9的链表,找到512大小空闲块,拆分成两个256大小块,将其中一个256大小块返回,另一个256大小块添加到n = 8的链表中;
  3. n = 9的链表中没有找到合适的块,则查找n = 10的链表,找到1024大小空闲块,将其拆分成512 + 256 + 256大小的块,返回需要获取的256大小的块,将剩下的512大小块插入n = 9链表中,剩下的256大小块插入n = 8的链表中;

合并过程是上述流程的逆过程,试图将大小相等的Buddy块进行合并成单独的块,并且会迭代合并下去,尝试合并成更大的块。合并需要满足要求:

  1. 两个Buddy块大小一致;
  2. 它们的物理地址连续;
  3. 第一个Buddy块的起始地址为 (2 x N x 4K)的整数倍,其中4K为页面大小,NBuddy块的大小;

struct page结构中,与Buddy System相关的字段有:

  • _mapcount: 用于标记page是否处在Buddy System中,设置成-1PAGE_BUDDY_MAPCOUNT_VALUE(-128)
  • private: 一个2^k次幂的空闲块的第一个页描述符中,private字段存放了块的order值,也就是k值;
  • index: 存放MIGRATE类型;
  • _refcount: 用户使用计数值,没有用户使用为0,有使用的话则增加;

合并时如下图所示:
www.wityx.com

2. Buddy页面分配

Buddy页面分配的流程如下图所示:
www.wityx.com

从上图中可以看出,在页面进行分配的时候,有以下四个步骤:

  1. 如果申请的是order = 0的页面,直接选择从pcp中进行分配,并直接退出;
  2. order > 0时,如果分配标志中设置了ALLOC_HARDER,则从free_list[MIGRATE_HIGHATOMIC]的链表中进行页面分配,分配成功则返回;
  3. 前两个条件都不满足,则在正常的free_list[MIGRATE_*]中进行分配,分配成功则直接则返回;
  4. 如果3中分配失败了,则查找后备类型fallbacks[MIGRATE_TYPES][4],并将查找到的页面移动到所需的MIGRATE类型中,移动成功后,重新尝试分配;

如下图:
www.wityx.com

上述分配的过程,前3个步骤都会调用到__rmqueue_smallest,第4步调用__rmqueue_fallback,将从这两个函数来分析。

2.1 __rmqueue_smallest

__rmqueue_smallest的源代码比较简单,贴上来看看吧:

static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,int migratetype)
{unsigned int current_order;struct free_area *area;struct page *page;/* Find a page of the appropriate size in the preferred list */for (current_order = order; current_order < MAX_ORDER; ++current_order) {area = &(zone->free_area[current_order]);page = list_first_entry_or_null(&area->free_list[migratetype],struct page, lru);if (!page)continue;list_del(&page->lru);rmv_page_order(page);area->nr_free--;expand(zone, page, order, current_order, area, migratetype);set_pcppage_migratetype(page, migratetype);return page;}return NULL;
}

从代码中可以看出:

  1. 从申请的order大小开始查找目标MIGRATE类型链表中页表,如果没有找到,则从更大的order中查找,直到MAX_ORDER
  2. 查找到页表之后,从对应的链表中删除掉,并调用expand函数进行处理;

expand函数的处理逻辑就跟本文概述中讲的例子一样,当在大的order链表中申请到了内存后,剩余部分会插入到其他的order链表中,来一张图就清晰了:
www.wityx.com

2.2 __rmqueue_fallback

当上述过程没有分配到内存时,便会开始从后备迁移类型中进行分配。
其中,定义了一个全局的二维fallbacks的数组,并根据该数组进行查找,代码如下:

/** This array describes the order lists are fallen back to when* the free lists for the desirable migrate type are depleted*/
static int fallbacks[MIGRATE_TYPES][4] = {[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
#ifdef CONFIG_CMA[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
#endif
#ifdef CONFIG_MEMORY_ISOLATION[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
#endif
};

__rmqueue_fallback完成的主要工作就是从后备fallbacks中找到一个迁移类型页面块,将其移动到目标类型中,并重新进行分配。
下图将示例整个流程:
www.wityx.com

3. Buddy页面释放

页面释放是申请的逆过程,相对来说要简单不少,先看一下函数调用图吧:
www.wityx.com

order = 0时,会使用Per-CPU Page Frame来释放,其中:

  • MIGRATE_UNMOVABLE, MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE三个按原来的类型释放;
  • MIGRATE_CMA, MIGRATE_HIGHATOMIC类型释放到MIGRATE_UNMOVABLE类型中;
  • MIGRATE_ISOLATE类型释放到Buddy系统中;
    此外,在PCP释放的过程中,发生溢出时,会调用free_pcppages_bulk()来返回给Buddy系统。来一张图就清晰了:
    www.wityx.com

在整个释放过程中,核心函数为__free_one_page,该函数的核心逻辑部分如下所示:

continue_merging:while (order < max_order - 1) {buddy_pfn = __find_buddy_pfn(pfn, order);buddy = page + (buddy_pfn - pfn);if (!pfn_valid_within(buddy_pfn))goto done_merging;if (!page_is_buddy(page, buddy, order))goto done_merging;/** Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,* merge with it and move up one order.*/if (page_is_guard(buddy)) {clear_page_guard(zone, buddy, order, migratetype);} else {list_del(&buddy->lru);zone->free_area[order].nr_free--;rmv_page_order(buddy);}combined_pfn = buddy_pfn & pfn;page = page + (combined_pfn - pfn);pfn = combined_pfn;order++;}
  • __find_buddy_pfn: 根据释放页面的pfn计算对应的buddy_pfn,比如pfn = 0x1000, order = 3,则buddy_pfn = 0x1008pfn = 0x1008, order = 3,则buddy_pfn = 0x1000
  • page_is_buddy:将pagebuddy进行配对处理,判断是否能配对;
  • 进行combine之后,再将pfn指向合并后的开始位置,继续往上一阶进行合并处理;

按照惯例,再来张图片吧:
www.wityx.com

不得不说,还有很多细节没有去扣,一旦沉沦,将难以自拔,待续吧。

这篇关于【原创】(七)Linux内存管理 - zoned page frame allocator - 2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/627644

相关文章

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

Linux中修改Apache HTTP Server(httpd)默认端口的完整指南

《Linux中修改ApacheHTTPServer(httpd)默认端口的完整指南》ApacheHTTPServer(简称httpd)是Linux系统中最常用的Web服务器之一,本文将详细介绍如何... 目录一、修改 httpd 默认端口的步骤1. 查找 httpd 配置文件路径2. 编辑配置文件3. 保存

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主