PaddleDetection学习3——使用Paddle-Lite在 Android 上部署PicoDet模型(fp16)

本文主要是介绍PaddleDetection学习3——使用Paddle-Lite在 Android 上部署PicoDet模型(fp16),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用Paddle-Lite在 Android 上运行PicoDet模型(fp16)

  • 1. 环境准备
  • 2. 部署步骤
    • 2.1 下载Paddle-Lite-Demo
    • 2.2 打开 picodet_detection_demo项目
      • 2.2.1 修改build.gradle,配置国内镜像仓库
      • 2.2.2 NDK 配置错误问题
      • 2.2.3 gradle.properties文件配置
      • 2.2.4 NDK版本选择
    • 2.3 更新预测库支持 FP16
      • 2.3.1 下载预测库
      • 2.3.2 替换java 库
      • 2.3.3 替换c++库
    • 2.4 部署模型到移动端
    • 2.5 注意事项
      • 2.5.1 算法前后处理
      • 2.5.2 后处理写入模型结构

1. 环境准备

参考前一篇在 Android 上使用Paddle-Lite实现实时的目标检测功能

2. 部署步骤

参考目标检测 C++ API Demo 使用指南

2.1 下载Paddle-Lite-Demo

下载链接
目标检测 Demo 位于 Paddle-Lite-Demo/object_detection/android/app/cxx/picodet_detection_demo 目录

2.2 打开 picodet_detection_demo项目

2.2.1 修改build.gradle,配置国内镜像仓库

将原工程build.gradle文件中的

repositories {google()jcenter()
}

全部替换成对应的国内镜像加速仓库,修改后文件如下

// Top-level build file where you can add configuration options common to all sub-projects/modules.buildscript {repositories {maven { url 'https://maven.aliyun.com/repository/google/' }maven { url 'https://maven.aliyun.com/repository/jcenter/'}}dependencies {classpath 'com.android.tools.build:gradle:3.4.0'// NOTE: Do not place your application dependencies here; they belong// in the individual module build.gradle files}
}allprojects {repositories {maven { url 'https://maven.aliyun.com/repository/google/' }maven { url 'https://maven.aliyun.com/repository/jcenter/'}}
}task clean(type: Delete) {delete rootProject.buildDir
}

2.2.2 NDK 配置错误问题

在导入项目、编译或者运行过程中遇到 NDK 配置错误的提示,请打开 File > Project Structure > SDK Location,修改 Andriod NDK location 为本机配置的 NDK 所在路径。

(如是是通过 Andriod Studio 的 SDK Tools 下载的 NDK,可以直接点击下拉框选择默认路径。 还有一种 NDK 配置方法,可以在 yolo_detection_demo/local.properties 文件中手动完成 NDK 路径配置,如下图所示。如果以上步骤仍旧无法解决 NDK 配置错误,请尝试根据 Andriod Studio 官方文档中的更新 Android Gradle 插件章节,尝试更新Android Gradle plugin版本。)
在这里插入图片描述

2.2.3 gradle.properties文件配置

问题:Unable to make field private final java.lang.String java.io.File.path accessible: module java.base does not “opens java.io” to unnamed module
在项目的gradle.properties文件,在org.gradle.jvmargs配置进行修改:

-add-exports=java.base/sun.nio.ch=ALL-UNNAMED \--add-opens=java.base/java.lang=ALL-UNNAMED \--add-opens=java.base/java.lang.reflect=ALL-UNNAMED -\-add-opens=java.base/java.io=ALL-UNNAMED \--add-exports=jdk.unsupported/sun.misc=ALL-UNNAMED

在这里插入图片描述

2.2.4 NDK版本选择

问题:invalid local symbol '__bss_start__' in global part of symbol table
NDK版本不同导致的,我这里用的是NDK版本是26.1.10909125,改为21.1.6352462后就能编译通过了。用第三方编译好了的库文件还有版本匹配的风险。
在这里插入图片描述

2.3 更新预测库支持 FP16

2.3.1 下载预测库

点击 Run 按钮,自动编译 APP ,该过程会自动下载 Paddle Lite 预测库和模型,需要联网。
在这里插入图片描述

默认下载的是v2.11_rc版本,不支持fp16预测。需要下载文件名带fp16的预测库。
在这里插入图片描述

2.3.2 替换java 库

(1)jar包
下载的预测库解压后将inference_lite_lib.android.armv8.clang.c++_shared.with_extra.with_cv.arm82_fp16\java\jar\PaddlePredictor.jar

替换 Demo 中的 Paddle-Lite-Demo/object_detection/andrdoid/app/cxx/picodet_detection_demo/app/PaddleLite/java/PaddlePredictor.jar
(2)Java so
inference_lite_lib.android.armv8.clang.c++_shared.with_extra.with_cv.arm82_fp16\java\so\libpaddle_lite_jni.so替换 Demo 中的 Paddle-Lite-Demo/object_detection/andrdoid/app/cxx/picodet_detection_demo/app/PaddleLite/java/libs/arm64-v8a/libpaddle_lite_jni.so

2.3.3 替换c++库

(1)inference_lite_lib.android.armv8.clang.c++_shared.with_extra.with_cv.arm82_fp16\cxx\include替换 Demo 中的 Paddle-Lite-Demo/object_detection/andrdoid/app/cxx/picodet_detection_demo/app/PaddleLite/cxx/include
(2)inference_lite_lib.android.armv8.clang.c++_shared.with_extra.with_cv.arm82_fp16\cxx\lib\libpaddle_lite_api_shared.so 库替换 Demo 中的 Paddle-Lite-Demo/object_detection/andrdoid/app/cxx/picodet_detection_demo/app/PaddleLite/cxx/libs/arm64-v8a/libpaddle_lite_api_shared.so

2.4 部署模型到移动端

手机连接电脑,打开 USB 调试和文件传输模式,并在 Android Studio 上连接自己的手机设备(手机需要开启允许从 USB 安装软件权限)
在这里插入图片描述
模型设置为picodet_s_320_cpu_fp16.nb
在这里插入图片描述
点击 Run 按钮,自动编译 APP安装到手机。成功后效果如下,图一:APP 安装到手机 图二: APP 打开后的效果,会自动识别图片中的物体并标记。
在这里插入图片描述
预测时间17ms。
在这里插入图片描述

2.5 注意事项

2.5.1 算法前后处理

Picodet 和 Picodet 增强版,算法的前、后处理完全相同
1.前处理:包括 Detection 常见的减均值等操作
2.后处理:包括 nms 等

2.5.2 后处理写入模型结构

(1) 该 Picodet Demo 使用PicoDet-S 320*320实现
(2)该 Demo 仅支持增强版模型替换,即将模型的后处理写入网络,具体操作方法请参考PaddleDetection导出部分。
注意:替换模型时,需要修改输入shape、类别数等。

这篇关于PaddleDetection学习3——使用Paddle-Lite在 Android 上部署PicoDet模型(fp16)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/627530

相关文章

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删