爬虫接口获取外汇数据(汇率,外汇储备,贸易顺差,美国CPI,M2,国债利率)

本文主要是介绍爬虫接口获取外汇数据(汇率,外汇储备,贸易顺差,美国CPI,M2,国债利率),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

akshare是一个很好用的财经数据api接口,完全免费!!和Tushare不一样。

除了我标题显示的数据外,他还提供各种股票数据,债券数据,外汇,期货,宏观经济,基金,银行,货币等等。

基本上我找经济类数据都优先用这个,本次就展示一下怎么获取标题上的这几个数据。


代码获取

先导入包:

import numpy as np
import pandas as pd
import akshare as ak
import warnings
warnings.filterwarnings('ignore')

获取美团对人民币汇率:(这里原本是可以返回很多国家对人民币的汇率的,我只取出了美国,并且原数据是日度的,我重采样为了月度数据)

currency_boc_safe_df = ak.currency_boc_safe().iloc[:,:2]
currency_boc_safe_df=currency_boc_safe_df.set_index('日期')
currency_boc_safe_df.index=pd.to_datetime(currency_boc_safe_df.index)
currency_boc_safe_df.rename(columns={'美元':'汇率'},inplace=True)
currency_boc_safe_df=currency_boc_safe_df.resample('M').mean()
currency_boc_safe_df

 

没什么问题,现在人民币汇率大概是7点多。数据时间口径也是月度。


获取外汇储备

#外汇储备
macro_china_fx_reserves_yearly_df = ak.macro_china_fx_reserves_yearly().rename("外汇储备")
macro_china_fx_reserves_yearly_df

这个数据本来就是月度的,所以就不需要额外处理,2014年是半年一个,可能原因是那个时候公布数据可能只是半年一次吧。到2016年就正常了。


获取广义货币量M2:

#M2
macro_china_m2_yearly_df = ak.macro_china_m2_yearly().rename("M2")
macro_china_m2_yearly_df

 


美国CPI:
 

#美国CPI
macro_usa_cpi_monthly_se = ak.macro_usa_cpi_monthly().rename("美国CPI")
macro_usa_cpi_monthly_se


国债利率:
 

#国债利率
import datetime
start_date = datetime.date(2016, 1, 1)
end_date = datetime.date(2023, 12, 31)
all_data_formatted = pd.DataFrame()
current_date_formatted = start_date
while current_date_formatted <= end_date:year_end_date_formatted = min(datetime.date(current_date_formatted.year + 1, 1, 1) - datetime.timedelta(days=1), end_date)start_date_str = current_date_formatted.strftime('%Y%m%d')end_date_str = year_end_date_formatted.strftime('%Y%m%d')year_data_formatted = ak.bond_china_yield(start_date=start_date_str, end_date=end_date_str)all_data_formatted = pd.concat([all_data_formatted, year_data_formatted])current_date_formatted = year_end_date_formatted + datetime.timedelta(days=1)
all_data_formatted.head()

 国债这个接口每次只能返回一年的数据,所以需要获取很多次,然后还需要把自己需要的1年期的国债利率取出来。

bond_china_yield_df = all_data_formatted[['曲线名称', '日期', '1年']].query('曲线名称=="中债国债收益率曲线"')
bond_china_yield_df=bond_china_yield_df.drop(columns='曲线名称').set_index('日期').rename(columns={'1年':"国债利率"})
bond_china_yield_df.index=pd.to_datetime(bond_china_yield_df.index)
bond_china_yield_df=bond_china_yield_df.resample('M').mean()
bond_china_yield_df


 贸易顺差:

macro_china_trade_balance_df = ak.macro_china_trade_balance().rename("贸易顺差")
macro_china_trade_balance_df.tail()


是不是都很方便,几行代码有的甚至一行代码就能获取你去统计年鉴翻遍的数据。

最后把数据都进行合并;

merged_df = pd.concat([currency_boc_safe_df, macro_china_fx_reserves_yearly_df, macro_china_m2_yearly_df, macro_usa_cpi_monthly_se, bond_china_yield_df, macro_china_trade_balance_df], axis=1).loc['2016-01-01':,:].resample('M').mean()
merged_df.index = merged_df.index.to_period('M') 
merged_df

除了几个月的某些指标没有数据外,其他数据都是整整齐齐的,很不错。很方便,这样就可以进行自己的下一步研究了。

当然我这是选择了几个需要的指标,方便我下一篇进行建模分析。

akshare还有超级多的种类的经济数据,可以自己去查看官方文档怎么获取。

不会获取的同学需要我这里的数据可以参考我下一篇的文章里面的数据获取方式:


创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~

这篇关于爬虫接口获取外汇数据(汇率,外汇储备,贸易顺差,美国CPI,M2,国债利率)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626142

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装