Gambler's Ruin(赌徒破产问题 概率论)

2024-01-19 22:08

本文主要是介绍Gambler's Ruin(赌徒破产问题 概率论),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

赌徒破产问题,做tc时遇到,顺便拿来好好研究下

英文原版地址为:Gambler's Ruin

问题如下:

一个赌徒有h枚金币,每次有概率a获得一枚金币或者概率(1-a)丢掉一枚金币,直到其所有的金币总数达到N或0则游戏结束,求赌徒最终赢得N枚金币的概率P(N|h)。

对于两个状态我们可以确定,即P(N|N)=1、P(N|0)=0。同时得出状态转移公式(概率的推导和普通的DP还是很不一样的,好好体会下):

P(N|h) = a*P(N|h+1) + (1-a)*P(N|h-1)

这类公式可以表示为二阶线性递归关系,其特征多项式为(自行百度):

x^2 - 1/a * x + (1-a)/a = 0

求出特征方程的根为1和r=(1-a)/a,针对a==1/2的情况需要特殊处理。得到公式的通解为:

P(N|h) = A*(1^h) + B*(r^h)

根据已知条件P(N|N)=1、P(N|0)=0得:

1 = A + B*(r^N)

0 = A + B

A = -1/(r^N - 1)、B = 1/(r^N - 1)

得到最终解 P(N|h) = (r^h - 1)/(r^N - 1)

但是当a==1/2时,特征方程有重根,因此这种情况下通解为 

P(N|h) = A+B*h

A = 0、B=1/N

即 P(N|h) = h/N


再来看topcoder srm 667 div1 500的题


Problem Statement

 

There are N cats sitting around a circle. The cats are numbered 0 throughN-1 in clockwise order. Note that as they sit around a circle, catN-1 is adjacent to cat 0. The cats are playing a game and the winner will get a prize!

The game looks as follows:

  • There is a single ball. Initially, cat 0 holds the ball.
  • In each round of the game, the cat who currently holds a ball flips a biased coin. The coin will come up heads with probabilityp/1,000,000,000 and tails with probability 1-(p/1,000,000,000).
  • If the coin came up heads, the current cat will hand the ball to the next cat clockwise, otherwise the current cat will hand the ball to the next cat counterclockwise. Formally, if the current cat is cat j, heads means that the ball goes to cat (j+1) modN and tails means that it goes to cat (j-1) mod N.
  • The game is played until each cat held the ball at least once. The cat who holds the ball at the end of the game is the winner.

In other words, the winner is the last cat to touch the ball. Note that cat 0 holds the ball at the beginning, and this does count as holding the ball. Hence, if there is more than one cat, cat 0 can never win the game.

Cat K wonders what is the probability that she will win the prize. You are given the intsN,K, and p. Return the probability that catK wins.

Definition

 
Class:CatsOnTheCircle
Method:getProb
Parameters:int, int, int
Returns:double
Method signature:double getProb(int N, int K, int p)
(be sure your method is public)

Limits

 
Time limit (s):2.000
Memory limit (MB):256
Stack limit (MB):256

Notes

-Your return value must have an absolute or relative error smaller than or equal to 1e-6

Constraints

-N will be between 3 and 1,000,000,000, inclusive.
-K will be between 1 and N-1, inclusive.
-p will be between 1 and 999,999,999, inclusive.

Examples

0) 
 
3
1
300000000
Returns: 0.6999999999999985
This game has N=3 cats, labeled 0, 1, 2. We havep=30,000,000, hence the coin will come up heads with probability 30,000,000/1,000,000,000 = 0.3 and tails with probability 0.7. The game can look as follows:
  1. Cat 0 is given the ball.
  2. Cat 0 flips the coin. The coin comes up tails.
  3. Cat 0 hands the ball to cat (0-1) mod 3 = cat 2.
  4. Cat 2 flips the coin. The comes up tails again.
  5. Cat 2 hands the ball to cat (2-1) mod 3 = cat 1.
  6. At this moment, each cat has held the ball. The game ends and cat 1 gets the prize.
This particular sequence of events has probability 0.7*0.7 of occuring. It can be shown that the probability that cat 1 wins the game is 0.7.
1) 
 
6
2
500000000
Returns: 0.2
The coin that is flipped will come up heads with probability 1/2, and tails with probability 1/2.
2) 
 
6
5
500000000
Returns: 0.2
3) 
 
10
2
666666666
Returns: 0.00391389439551009
4) 
 
999999999
999999996
777777777
Returns: 0.05830903870125612
5) 
 
1000000000
4
300000000
Returns: 0.044981259448371
6) 
 
534428790
459947197
500000000
Returns: 1.871156682766205E-9



题意:

N只猫围成一圈玩游戏,顺时针编号0~N-1,N-1与0相邻。游戏规则如下:

、一开始编号0的猫拿着一个球

、每个回合中手里拿球的猫抛硬币,该硬币有P/1000000000的概率正面朝上,(1-P/1000000000)的概率反面朝上

、如果硬币正面朝上,则该猫 j 把球传给编号为(1+j)%N的猫,否则传给编号为(j-1+N)%N的猫

、该游戏持续进行直到每只猫至少拿到一次球。且最终拿球的猫赢得游戏

现在给定N K P,求出编号为K的猫赢得游戏的概率。


分析:

1. 如果最终猫K拿到球并结束游戏,那么之前一回合必然是猫K-1或K+1拿球,且除K外的猫都至少拿过一次球。则最终的结果为P(K+1,K-1) + P(K-1,K+1),既猫K+1先拿到球的前提下K-1拿到球的概率加上猫K-1先拿到球的前提下K+1拿到球的概率。这样就可以了,因为当全局只剩下K没有拿过球,K必然是最后一个拿到球的。

2. 这种情况和赌徒破产问题有什么类似之处呢?再来回顾下赌徒破产问题,该问题求的是当前有h枚金币的情况下,赢得N枚金币的概率。不如我们换一种表述方式,即该赌徒一开始最多能连续输掉h枚金币。放到这题的环境中,我们假设顺时针走等于金币加一,逆时针走等于金币减一。

3. 以求解P(K-1,K+1)为例,需要将其拆分为两种概率的乘积:P(a)=从0出发向左走最多到达K+2,且向右走必然到达K-1;P(b)=从K-1出发向右最多到达K-1,且向左走必然到达K+1;这样一来就可以套赌徒破产问题了。

4. 大于1.0的浮点数求幂可能会爆,需要控制一下

总结:

概率真是tm的神奇


#include <cstdio>
#include <iostream>
#include <string>
#include<assert.h>
#include <algorithm>
#include <vector>
#include <cstring>
#include <queue>
#include <set>
typedef long long int ll;
#define rp(i,b) for(int i=(0),__tzg_##i=(b);i<__tzg_##i;++i)
#define rep(i,a,b) for(int i=(a),__tzg_##i=(b);i<__tzg_##i;++i)
#define repd(i,a,b) for(int i=(a),__tzg_##i=(b);i<=__tzg_##i;++i)
#define mst(a,b) memset(a,b,sizeof(a))
using namespace std;
const double Denominator = 1e9;
const double eps = 1/Denominator;
struct CatsOnTheCircle {double gamblers_ruin(int n, int h, double p) {double q = 1.0-p;if (fabs(p-q) < eps)return 1.0*h/n;if (q > p)return 1-gamblers_ruin(n, n-h, q);double r = q/p;return (pow(r,h)-1)/(pow(r,n)-1);}double getProb(int N, int K, int _p){double p = _p/Denominator;double q = 1.0-p;double o = gamblers_ruin(N-2, N-K-1, p);double u = gamblers_ruin(N-2, K-1, q);return o*gamblers_ruin(N-1, 1, q) + u*gamblers_ruin(N-1, 1, p);}
};




这篇关于Gambler's Ruin(赌徒破产问题 概率论)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623844

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socket read timed out的问题

《如何解决Druid线程池Cause:java.sql.SQLRecoverableException:IO错误:Socketreadtimedout的问题》:本文主要介绍解决Druid线程... 目录异常信息触发场景找到版本发布更新的说明从版本更新信息可以看到该默认逻辑已经去除总结异常信息触发场景复