使用pyechart创建折线图

2024-01-19 19:20

本文主要是介绍使用pyechart创建折线图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

import json
from pyecharts.charts import Line
from pyecharts import options# 首先使用文件打开数据
f_us = open('Desktop/python/Project/数据可视化/美国.txt','r',encoding="UTF-8")
f_rb = open('Desktop/python/Project/数据可视化/日本.txt','r',encoding="UTF-8")
f_id = open('Desktop/python/Project/数据可视化/印度.txt','r',encoding="UTF-8")
us_data = f_us.read()
rb_data = f_rb.read()
id_data = f_id.read()# 定义函数,对数据进项处理,取出文章"trend"中的数据。
def data_update(data):# 去掉开头用不到的数据(使用for循环,匹配到第一个{之前的所有字符串,都通过序列切片去掉)for x in data:if x == '{':breakelse:# 字符串的切片,返回的是从第二个开始到最后一个的字符串data = data[1:]# 去掉结尾不用的数据,返回的是从第一个开始到倒数第二个的数据data =data[:-2]# 字符串转字典,使用json方法data = json.loads(data)# 取出trend_data 部分trend_data = data["data"][0]["trend"]return trend_data# 分别调用函数对数据进项处理。
us_data = data_update(us_data)
rb_data = data_update(rb_data)
id_data = data_update(id_data)# 取出日期数据,作为x轴
x_data_us = us_data["updateDate"][:314]
x_data_rb = rb_data["updateDate"][:314]
x_data_id = id_data["updateDate"][:314]# 取出确认数据用作Y轴
y_data_us = us_data["list"][0]["data"][:314]
y_data_rb = rb_data["list"][0]["data"][:314]
y_data_id = id_data["list"][0]["data"][:314]# 生成图标
line = Line()# 添加X轴,X轴是公用的,所有添加一个就行。
line.add_xaxis(x_data_id)# 添加Y轴,分别添加美国的日本的印度的Y轴,最后注明折线图中折线上不显示数字。
line.add_yaxis('美国确诊人数',y_data_us,label_opts=options.LabelOpts(is_show=False))
line.add_yaxis('日本确诊人数',y_data_rb,label_opts=options.LabelOpts(is_show=False))
line.add_yaxis('印度确诊人数',y_data_id,label_opts=options.LabelOpts(is_show=False))# 使用render方法生成折线图
line.render()
# 设置全局选项line.set_global_opts(# 标题设置title_opts=options.TitleOpts(title="2020年美日印确诊人数统计",pos_left="center",pos_bottom="1%")
)# 文件关闭
f_id.close()
f_rb.close()
f_us.close()

效果演示:

这篇关于使用pyechart创建折线图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623422

相关文章

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Java Stream 并行流简介、使用与注意事项小结

《JavaStream并行流简介、使用与注意事项小结》Java8并行流基于StreamAPI,利用多核CPU提升计算密集型任务效率,但需注意线程安全、顺序不确定及线程池管理,可通过自定义线程池与C... 目录1. 并行流简介​特点:​2. 并行流的简单使用​示例:并行流的基本使用​3. 配合自定义线程池​示

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

Spring创建Bean的八种主要方式详解

《Spring创建Bean的八种主要方式详解》Spring(尤其是SpringBoot)提供了多种方式来让容器创建和管理Bean,@Component、@Configuration+@Bean、@En... 目录引言一、Spring 创建 Bean 的 8 种主要方式1. @Component 及其衍生注解