How to Save an ARIMA Time Series Forecasting Model in Python (如何在Python中保存ARIMA时间序列预测模型)

本文主要是介绍How to Save an ARIMA Time Series Forecasting Model in Python (如何在Python中保存ARIMA时间序列预测模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

How to Save an ARIMA Time Series Forecasting Model in Python

原文作者:Jason Brownlee
原文地址:https://machinelearningmastery.com/save-arima-time-series-forecasting-model-python/
译者微博:@从流域到海域
译者博客:blog.csdn.net/solo95

如何在Python中保存ARIMA时间序列预测模型

自回归积分滑动平均模型(Autoregressive Integrated Moving Average Mode, ARIMA)是一个流行的时间序列分析和预测的线性模型。

statsmodels库中提供了Python中所使用ARIMA的实现。ARIMA模型可以保存到一个文件中,以便以后用于对新数据进行预测。statsmodels库的当前版本中有一个bug,会阻止保存的模型被加载。

在本教程中,您将了解如何诊断和解决此问题。

让我们开始吧。

如何在Python中保存ARIMA时间序列预测模型
照片由Les Chatfield提供,保留一些权利。

日均女性出生数据集

首先,我们来看一个标准的时间序列数据集,我们可以用它来理解有关statsmodels ARIMA实现的问题。

这个“日均女性出生”数据集描述了1959年加利福尼亚州每天的女性出生人数。

计数单位是一,365天都进行了观察。数据集的来源归功于Newton(1988)。

您可以了解更多信息并从DataMarket网站下载数据集。

下载数据集并将其放在当前工作目录中,文件命名为“ daily-total-female-births.csv ”。

下面的代码片段将加载和绘制数据集。

from pandas import Series
from matplotlib import pyplot
series = Series.from_csv('daily-total-female-births.csv', header=0)
series.plot()
pyplot.show()

运行示例将数据集加载为Pandas系列,然后显示数据的线图。

日均女性出生总数图

Python环境

请确认您使用的是最新版本的statsmodels库。

你可以通过运行下面的脚本来进行确认:

import statsmodels
print('statsmodels: %s' % statsmodels.__version__)

运行脚本应该产生一个显示statsmodels 0.6或0.6.1的结果。

statsmodels: 0.6.1 

您可以使用Python 2或3。

更新:我可以确认故障仍存在于statsmodels 0.8中并导致下列错误消息出现:

AttributeError: 'ARIMA' object has no attribute 'dates' 

ARIMA模型保存bug

我们可以很容易地在“日均女性出生”数据集上训练一个ARIMA模型。

下面的代码片段在数据集上的训练出一个ARIMA(1,1,1)模型。

model.fit()函数返回一个ARIMAResults对象,我们可以在这个对象上调用save()保存到文件模型并且之后可以使用load()来加载它。

from pandas import Series
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.tsa.arima_model import ARIMAResults# load data
series = Series.from_csv('daily-total-female-births.csv', header=0)# prepare data
X = series.values
X = X.astype('float32')# fit model
model = ARIMA(X, order=(1,1,1))
model_fit = model.fit()# save model
model_fit.save('model.pkl')# load model
loaded = ARIMAResults.load('model.pkl')

运行本例将训练出模型并将其保存到文件中,而不会出现问题。

但当您尝试从文件加载模型时,会报告一个错误。

Traceback (most recent call last):File "...", line 16, in <module>loaded = ARIMAResults.load('model.pkl')File ".../site-packages/statsmodels/base/model.py", line 1529, in loadreturn load_pickle(fname)File ".../site-packages/statsmodels/iolib/smpickle.py", line 41, in load_picklereturn cPickle.load(fin)
TypeError: __new__() takes at least 3 arguments (1 given)

特别的,注意下面这一行:

TypeError: __new__() takes at least 3 arguments (1 given)

之前的步骤都没出错,那么我们如何解决这个问题呢?

ARIMA模型保存Bug解决方法

Zae Myung Kim在2016年9月发现了这个错误并报告了错误。

你可以在这里读到所有和它有关的信息:

  • BUG: Implemented getnewargs() method for unpickling

这个错误是因为pickle所需要的一个函数(用于序列化Python对象的库)在statsmodels中没有定义。

在保存之前,必须在ARIMA模型中定义函数__getnewargs__,以定义构造对象所需的参数。

我们可以解决这个问题。修复涉及两件事情:

  1. 定义一个适用于ARIMA对象的__getnewargs__函数的实现 。
  2. 将这个新函数添加到ARIMA。

谢天谢地,Zae Myung Kim在他的bug报告中提供了一个函数的例子,所以我们可以直接使用它:

def __getnewargs__(self):return ((self.endog),(self.k_lags, self.k_diff, self.k_ma)

Python允许我们对一个对象施加猴补丁操作,即使是像statsmodels这样的库。
(猴补丁(英语:Monkey patch),参见维基百科,有相应中文条目,译者注)

我们可以使用赋值在现有的对象上定义一个新的函数。

我们可以对ARIMA对象上的__getnewargs__函数做如下操作:

ARIMA.__getnewargs__ = __getnewargs__

下面列出了使用猴补丁在Python中加载和保存ARIMA模型的完整示例:

from pandas import Series
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.tsa.arima_model import ARIMAResults# monkey patch around bug in ARIMA class
def __getnewargs__(self):return ((self.endog),(self.k_lags, self.k_diff, self.k_ma))
ARIMA.__getnewargs__ = __getnewargs__# load data
series = Series.from_csv('daily-total-female-births.csv', header=0)# prepare data
X = series.values
X = X.astype('float32')# fit model
model = ARIMA(X, order=(1,1,1))
model_fit = model.fit()# save model
model_fit.save('model.pkl')# load model
loaded = ARIMAResults.load('model.pkl')

现在运行示例就可以成功加载模型,而不会出错。

概要

在这篇文章中,您了解了如何解决statsmodels ARIMA实现时的一个错误,该错误阻止了您将ARIMA模型保存到文件或从文件中加载ARIMA模型。

你学到了如何编写一个猴补丁来解决这个bug,以及如何证明它确实已经修复了。

这篇关于How to Save an ARIMA Time Series Forecasting Model in Python (如何在Python中保存ARIMA时间序列预测模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623344

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参