Three.js 学习笔记之模型(学习中1.18更新)

2024-01-19 07:52

本文主要是介绍Three.js 学习笔记之模型(学习中1.18更新),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 模型 = 几何体 + 材质
    • 模型
      • 点模型Points - 用于显示点
      • 线模型Line | LineLoop | LineSegments
      • 网格模型mesh - 三角形
    • 几何体BufferGeometry
      • 缓冲类型几何体BufferGeometry - 基类
        • 创建几何体的方式
        • BufferAttribute Types
          • 定义顶点法线 geometry.attributes.normal
      • BufferGeometry的子类几何体
        • 几何体的分段数 - 将一个大块分成几个小块
        • SphereGeometry 球体
      • 几何体的旋转、缩放与平移
    • 材质 Material
      • 点材质PointsMaterial - Points使用的默认材质
      • 网格材质
        • MeshLamberMaterial
        • 高光网格材质 MeshPhongMaterial

模型 = 几何体 + 材质

  • 模型对象的父类都是三维物体Object3D

  • Three.js的材质默认正面可见、背面不可见

    • 解决办法:材质配置对象中设置side属性
    side取值描述
    THREE.FrontSide只有正面可见
    THREE.DoubleSide两面可见
    THREE.BackSide设置只有背面可见
  • 模型position是指模型中心的位置,是一个三维向量。几何体attributes.position是指几何体顶点位置信息,是一个BufferAttribute类型

模型

模型的通用属性和方法都是继承三维物体Object3D

属性与方法描述
position : Vector3设置模型中心的位置,默认值THREE.Vector3(0.0,0.0,0.0)
translateX/translateY/translateZ ( distance : Float )沿着X轴将平移distance个单位,本质改变的position 值
scale : Vector3缩放
translateOnAxis ( axis : Vector3, distance : Float )沿着标准化后的向量axis(归一化后的向量表示方向)移动distance
const axis = new THREE.Vector3(1, 1, 1);
axis.normalize(); //向量归一化后表示方向,方向不变,大小变为单位向量
//沿着axis轴表示方向平移100
mesh.translateOnAxis(axis, 100);

点模型Points - 用于显示点

语法:new Points( geometry : BufferGeometry, material : Material )

  • geometry 几何体对象(可选),BufferGeometry的实例,默认值是一个新的BufferGeometry
  • material 材质对象(可选),默认值为PointsMaterial

描述:一个用于显示点的类,将几何体geometry渲染成点。

线模型Line | LineLoop | LineSegments

语法:new Line( geometry : BufferGeometry, material : Material )

  • geometry 线段的顶点,默认值是一个新的BufferGeometry
  • material 线的材质,默认值是一个新的且随机颜色的LineBasicMaterial
线模型绘制线条的规则
Line从第一个点开始到最后一个点,依次连成线
不闭合
LineLoop从第一个点开始到最后一个点,依次连成线,并将最后一个顶点连回第一个顶点
闭合
LineSegments从第一个点开始,第一个点连接第二个点,第三个点连接第四个点…有n个点,就有n/2条线
间断

网格模型mesh - 三角形

本质:一个一个三角形拼接
说明:几何体所有顶点坐标三个为一组,构成一个三角形,多组顶点构成多个三角形,用来模拟物体的表面。
在这里插入图片描述
三角形的正反面
三个点可以构成一个三角形,从第一个点往第三个点连接

  • 正面:相机对着面,连接的顺序是逆时针
  • 反面:相机对着面,连接的顺序是顺时针

几何体BufferGeometry

常见几何体可以看成是封装后的BufferGeometry

缓冲类型几何体BufferGeometry - 基类

描述:BufferGeometry是一个没有任何形状的空几何体,通过定义顶点数据将BufferGeometry自定义为任何几何形状。每个几何体可以看作是由多个顶点构成的图案。

BufferGeometry实例的属性与方法

属性名/方法描述
index:BufferAttribute绑定几何体的顶点索引,每个三角形都绑定了三个顶点的索引。
允许顶点坐标在三角形中复用。
attributes : Object存储该几何体相关属性的hashmap (这里直接打印看不见里面的属性),每个value的类型都是BufferAttribute
可以通过 几何体.setAttribute几何体.getAttribute 添加和访问与当前几何体相关的属性。

案例
1.使用 THREE.BufferGeometry创建一个空的几何体对象

const geometry = new THREE.BufferGeometry(); 

2.利用Float32Array定义顶点数据,使用属性缓冲区对象BufferAttribute表示threejs几何体顶点数据。

通过javascript类型化数组Float32Array创建一组xyz坐标数据用来表示几何体的顶点坐标。

//类型化数组创建顶点数据
const vertices = new Float32Array([0, 0, 0, //顶点1坐标50, 0, 0, //顶点2坐标0, 100, 0, //顶点3坐标0, 0, 10, //顶点4坐标0, 0, 100, //顶点5坐标50, 0, 10, //顶点6坐标
]);
// 创建属性缓冲区对象,3个为一组,表示一个顶点的xyz坐标
const attribue = new THREE.BufferAttribute(vertices, 3);

3.设置几何体的定点.attributes.position

// 设置几何体attributes属性的位置属性
geometry.attributes.position = attribue;

在这里插入图片描述

4.渲染顶点

4.1使用点模型渲染顶点数据,会把几何体渲染为点,网格模型Mesh会把几何体渲染为面。

// 点渲染模式
const material = new THREE.PointsMaterial({color: 0xffff00,size: 10.0 //点对象像素尺寸
}); 
const points = new THREE.Points(geometry, material); //点模型对象

在这里插入图片描述

4.2使用线模型渲染顶点数据,从第一个点开始到最后一个点,依次连成线。

// 线材质对象
const material = new THREE.LineBasicMaterial({color: 0xff0000 //线条颜色
}); 
// 创建线模型对象
const line = new THREE.Line(geometry, material);

在这里插入图片描述
4.3用网格模型渲染顶点

const material = new THREE.MeshBasicMaterial({side: THREE.DoubleSide, //两面可见
});

在这里插入图片描述

创建几何体的方式
  • 直接利用顶点数据,每一个点对应一个坐标
    • new Float32Array构造坐标数组 | 32位的浮点数型数组
    • THREE.BufferAttribute(坐标数组,3) 每三个坐标为一组,构建顶点坐标。顶点的个数等于组数
    • 赋值给geometry.attributes.position
  • 利用顶点索引,多个顶点可以利用同一个坐标
    • new Float32Array构造坐标数组
    • THREE.BufferAttribute(坐标数组,3) 每三个坐标为一组,构建顶点坐标。
    • new Uint16Array 构造索引顶点数组,顶点的个数需要和索引的个数一样 | 16 位无符号整数
    • geometry.index = new THREE.BufferAttribute(indexes, 1) 通过索引去坐标数组中取顶点坐标

案例: 构建一个矩形平面几何体 - 通过顶点数据
顶点坐标:一个矩形平面,可以至少通过两个三角形拼接而成。
三角形方向:两个三角形的正面需要保持一致
在这里插入图片描述

const vertices = new Float32Array([0, 0, 0, //顶点1坐标80, 0, 0, //顶点2坐标80, 80, 0, //顶点3坐标0, 0, 0, //顶点4坐标   和顶点1位置相同80, 80, 0, //顶点5坐标  和顶点3位置相同0, 80, 0, //顶点6坐标
]);
const attribue = new THREE.BufferAttribute(vertices, 3);
geometry.attributes.position = attribue;

几何体顶点索引数据 - 通过顶点索引
在上述案例中,坐标4和坐标5其实是重复的坐标,重复的坐标可以复用吗?

// 删除重复的坐标
const vertices = new Float32Array([0, 0, 0, //顶点1坐标 | 索引080, 0, 0, //顶点2坐标 4坐标 | 索引180, 80, 0, //顶点3坐标 5坐标 | 索引20, 80, 0, //顶点6坐标 | 索引3
]);// Uint16Array类型数组创建顶点索引数据
const indexs = new Uint16Array([// 下面索引值对应顶点位置数据中的顶点坐标0, 1, 2, 0, 2, 3,
])// 索引数据赋值给几何体的index属性 1个为1组
geometry.index = new THREE.BufferAttribute(indexs, 1); 
BufferAttribute Types

three.js 中一共有 9 种 BufferAttribute,每种和 JavaScript 中的类型相对应Typed Arrays使用new创建BufferAttribute对象时,传入数组是什么内省,生成的BufferAttribute就是什么类型

BufferAttribute 类型对应的JS数组类型
THREE.Float64BufferAttributeFloat64Array
THREE.Uint32BufferAttributeUint32Array
THREE.Int32BufferAttributeInt32Array
THREE.Uint16BufferAttributeUint16Array
THREE.Int16BufferAttributeInt16Array
THREE.Uint8ClampedBufferAttributeUint8ClampedArray
THREE.Uint8BufferAttributeUint8Array
THREE.Int8BufferAttributeInt8Array
定义顶点法线 geometry.attributes.normal

数学上法线的概念
一个平面,法线的就是改平面的垂线,如果是光滑曲面,一点的法线就是该点切面的法线。

Three.js中法线是通过顶点定义,默认情况下,每个顶点都有一个法线数据。

无顶点索引的使用方式

const vertices = new Float32Array([0, 0, 0, //顶点1坐标80, 0, 0, //顶点2坐标80, 80, 0, //顶点3坐标0, 0, 0, //顶点4坐标80, 80, 0, //顶点5坐标0, 80, 0, //顶点6坐标
]);
geometry.attributes.position =new THREE.BufferAttribute(vertices, 3);
const material = new THREE.MeshLambertMaterial({color: 0xff0000, //线条颜色side: THREE.DoubleSide
}); 
// 矩形平面,无索引,两个三角形,6个顶点
// 每个顶点的法线数据和顶点位置数据一一对应
const normals = new Float32Array([0, 0, 1, //顶点1法线( 法向量 )0, 0, 1, //顶点2法线0, 0, 1, //顶点3法线0, 0, 1, //顶点4法线0, 0, 1, //顶点5法线0, 0, 1, //顶点6法线
]);
// 设置几何体的顶点法线属性.attributes.normal
geometry.attributes.normal = new THREE.BufferAttribute(normals, 3); 

有顶点索引的使用方式

const vertices = new Float32Array([0, 0, 0, //顶点1坐标 顶点4坐标80, 0, 0, //顶点2坐标80, 80, 0, //顶点3坐标 顶点5坐标0, 80, 0, //顶点6坐标
]);
geometry.attributes.position =new THREE.BufferAttribute(vertices, 3);
// 矩形平面,有索引,两个三角形,有2个顶点重合,有4个顶点
// Uint16Array类型数组创建顶点索引数据
const indexs = new Uint16Array([// 下面索引值对应顶点位置数据中的顶点坐标0, 1, 2, 0, 2, 3,
])
geometry.index = new THREE.BufferAttribute(indexs, 1); 
// 每个顶点的法线数据和顶点位置数据一一对应
const normals = new Float32Array([0, 0, 1, //顶点1法线( 法向量 )0, 0, 1, //顶点2法线0, 0, 1, //顶点3法线0, 0, 1, //顶点4法线
]);
// 设置几何体的顶点法线属性.attributes.normal
geometry.attributes.normal = new THREE.BufferAttribute(normals, 3);

BufferGeometry的子类几何体

在这里插入图片描述

几何体的分段数 - 将一个大块分成几个小块

很多几何体构造函数提供了分段数,其默认值为1。除去必要参数之外的第一个参数表示x轴分成几段,第二个参数表示y轴分成几段。

PlaneGeometry矩形平面案例

// 把一个矩形x轴方向分为两段,每份2个三角形,一共4个三角形
const geometry = new THREE.PlaneGeometry(50,50,2,1);

在这里插入图片描述
SphereGeometry球体平面案例

// 参数2表示水平方向(经线方向)  参数3表示垂直方向(维度)
// 绿色框为一块,每个水平方向有4块,每一块由两个三角形组成
const geometry = new THREE.SphereGeometry( 50, 4, 16 );

在这里插入图片描述

SphereGeometry 球体

语法:new SphereGeometry(radius : Float,可选参数)

由于所有几何体都是由一个一个三角形组成,所以如果球体细分数比较低,表面就不会那么光滑,分段数越大越接近一个球。

可选参数描述
widthSegments水平分段数(沿着经线分段),最小值为3,默认值为32。
heightSegments垂直分段数(沿着纬线分段),最小值为2,默认值为16。

几何体的旋转、缩放与平移

本质:几何变换的本质是改变几何体的顶点数据
在这里插入图片描述

方法描述
scale ( x : Float, y : Float, z : Float )从几何体原始位置开始缩放几何体
translate ( x : Float, y : Float, z : Float )从几何体原始位置开始移动几何体
rotateX/rotateY/rotateZ( radians : Float )沿着主轴旋转几何体,参数是弧度
center()几何体中心与坐标原点重合
// 几何体xyz三个方向都放大2倍
geometry.scale(2, 2, 2);
// 几何体沿着x轴平移50
geometry.translate(50, 0, 0);
// 几何体绕着x轴旋转45度
geometry.rotateX(Math.PI / 4);
// 几何体旋转、缩放或平移之后,查看几何体顶点位置坐标的变化
// BufferGeometry的旋转、缩放、平移等方法本质上就是改变顶点的位置坐标
console.log('顶点位置数据', geometry.attributes.position);

材质 Material

创建材质:new 材质(配置对象)

配置对象里可配置的属性其实就是返回的材质实例拥有的属性

/* 案例 */
const material = new THREE.MeshLambertMaterial({color:0xff0000,wireframe:true,
});
console.log("material.wireframe:",material.wireframe)

点材质PointsMaterial - Points使用的默认材质

语法:new PointsMaterial( parameters : Object )

实例的属性和方法

属性/方法描述
size:Number设置点的大小,默认值为1.0。
color:Color材质的颜色,默认值为白色 (0xffffff)。

网格材质

在这里插入图片描述
使用收光照影响的材质时,如果没有光照默认是黑色的(renderer画布设置了颜色可以看出)

MeshLamberMaterial

语法:new MeshLambertMaterial( parameters : Object )
对光照的反射为漫反射:光线向四周反射。
在这里插入图片描述

Lambert网格材质的属性与方法

属性和方法描述
wireframe : Boolean将几何体渲染为线框,默认值为false,渲染为平面多边形。
高光网格材质 MeshPhongMaterial
  • 语法:new MeshPhongMaterial( parameters : Object )
    参数对象的属性 = 自有属性 + Material基类继承的属性
  • 对光照的反射为镜面反射:想象一面镜子的反射,如果刚好反射光对眼睛,会非常刺眼(某个局部区域高亮,像擦了高光)

注意:AmbientLight环境光没有方向,整体改变场景的光照。所以只有环境光的,高光效果会失效。

MeshPhongMaterial高光网格材质配置参数的自有属性

属性名属性描述
shininess高亮的程度,越高的值越闪亮,默认30
specular高光颜色,默认为0x111111灰色

这篇关于Three.js 学习笔记之模型(学习中1.18更新)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/621732

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

使用Python获取JS加载的数据的多种实现方法

《使用Python获取JS加载的数据的多种实现方法》在当今的互联网时代,网页数据的动态加载已经成为一种常见的技术手段,许多现代网站通过JavaScript(JS)动态加载内容,这使得传统的静态网页爬取... 目录引言一、动态 网页与js加载数据的原理二、python爬取JS加载数据的方法(一)分析网络请求1

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Oracle 通过 ROWID 批量更新表的方法

《Oracle通过ROWID批量更新表的方法》在Oracle数据库中,使用ROWID进行批量更新是一种高效的更新方法,因为它直接定位到物理行位置,避免了通过索引查找的开销,下面给大家介绍Orac... 目录oracle 通过 ROWID 批量更新表ROWID 基本概念性能优化建议性能UoTrFPH优化建议注

VSCode中配置node.js的实现示例

《VSCode中配置node.js的实现示例》本文主要介绍了VSCode中配置node.js的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录一.node.js下载安装教程二.配置npm三.配置环境变量四.VSCode配置五.心得一.no