实验笔记之——基于TUM-RGBD数据集的SplaTAM测试

2024-01-19 07:36

本文主要是介绍实验笔记之——基于TUM-RGBD数据集的SplaTAM测试,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

之前博客对SplaTAM进行了配置,并对其源码进行解读。

学习笔记之——3D Gaussian SLAM,SplaTAM配置(Linux)与源码解读-CSDN博客SplaTAM全称是《SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM》,是第一个(也是目前唯一一个)开源的用3D Gaussian Splatting(3DGS)来做SLAM的工作。在下面博客中,已经对3DGS进行了调研与学习。其中也包含了SplaTAM算法的基本介绍。学习笔记之——3D Gaussian Splatting及其在SLAM与自动驾驶上的应用调研-CSDN博客。https://blog.csdn.net/gwplovekimi/article/details/135647242?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22135647242%22%2C%22source%22%3A%22gwplovekimi%22%7D在原博客中也对TUM-RGBD数据集的freiburg1_desk_seed0进行了测试,感觉效果一般般,为此本博文打算对下载的TUM几个序列都进行测试看看效果。

本博文为本人实验测试SplaTAM过程的实验记录,本博文仅供本人实验记录用~

目录

运行过程

rgbd_dataset_freiburg1_desk

rgbd_dataset_freiburg1_desk2

rgbd_dataset_freiburg1_room

rgbd_dataset_freiburg2_xyz

rgbd_dataset_freiburg3_long_office_household

总结与分析


运行过程

注意:要修改configs/tum/splatam.py中的scene_name来决定训练哪个序列

(之前的desk训练时间大概30分钟左右,还是打开一下tmux吧)
tmux new -s desk2 
tmux new -s room
tmux new -s xyz
tmux new -s household(开启运行的环境)
conda activate splatam(开始测试运行)
python scripts/splatam.py configs/tum/splatam.py

运行后,可以看到experiments文件如下:

忘记指定GPU了,都挤到一块板子上跑了

等待一段时间,下面看看再各个序列的测试效果

要训练完才可以可视化建图与定位的效果(注意跟训练一样要修改对应的config文件来选用序列,seed统一都为0)

(最终的建图效果)
python viz_scripts/final_recon.py configs/tum/splatam.py(训练过程的可视化)
python viz_scripts/online_recon.py configs/tum/splatam.py

rgbd_dataset_freiburg1_desk

SplaTAM Testing using TUM-Dataset freiburg1

SplaTAM Testing using TUM-Dataset freiburg1

训练完结果如下:PSNR只有21.49算是比较差的吧,当然deth恢复的精度是3.38cm以及定位精度是3.34(论文里面是3.35)这个结果还是不错的。细看论文会发现,论文里面对于TUM数据集好像只用来验证定位精度,而mapping性能都是采用Replica与ScanNet++。目前不打算花太多时间去逐一验证了,有小伙伴验证了的话可以给个评论看看是否如论文的效果,因为在tum数据集上,个人感觉mapping效果一般般~

rgbd_dataset_freiburg1_desk2

结果如下:

这个效果比上面的要更差一些,可以发现各个性能指标都差一些(此处定位精度是是6.58cm,论文是6.54cm)。

视频效果如下所示:

SplaTAM Testing using TUM-Dataset freiburg1

rgbd_dataset_freiburg1_room

结果如下(此处定位精度是11.49cm,论文结果是11.13cm)

视频效果如下所示:

SplaTAM Testing using TUM-Dataset freiburg1

rgbd_dataset_freiburg2_xyz

rgbd_dataset_freiburg3_long_office_household

总结与分析

综合下来,几个数据集下的表现,tracking的结果跟论文给出的差不多,而mapping的psnr都比较差(论文验证psnr性能指标是用其他几个数据集),而depth的恢复精度(L1)都是3~4cm这个结果还是比较好的(不过毕竟用了RGBD~),

后面有时间再试试用手机实测来看看吧,不过目前看来用数据集测试的效果都比较差,实时性也很一般,比如rgbd_dataset_freiburg1_desk序列都训练30多分钟了,PSNR还只有21左右,应该3DGS性能不至于这样,可能是因为一些参数的设置包括剪枝等等的操作吧~感觉还是有比较大可以研究的空间~

这篇关于实验笔记之——基于TUM-RGBD数据集的SplaTAM测试的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/621681

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查