计算机网络课程设计-Tracert 与 Ping 程序设计与实现

本文主要是介绍计算机网络课程设计-Tracert 与 Ping 程序设计与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

1 实验题目

2 实验目的

3 实验内容

3.1 步骤

3.2 关键代码

3.2.1 发送ICMP数据报

3.2.2 解析收到的数据报

4 实验结果与分析

5 代码

5.1 ping代码

5.2 Tracert代码


前言

        本实验为计算机网络课程设计内容,基本上所有代码都是根据指导书给的附录写出来的。有些实验需要实现图形界面,但是出于期末考试压力,我所有实验均是在控制台输入输出的,没有花额外时间去学习qt了,有精力的同学可以自学一下qt实现简单的图形界面。同时,该博客内容为部分报告内容,仅为大家提供参考,请勿直接抄袭。另外,本次实验所用平台是dev c++5.11

1 实验题目

        实验二 Tracert 与 Ping 程序设计与实现

2 实验目的

        了解 Tracert 程序的实现原理,并调试通过。然后参考 Tracert 程序和教材 4.4.2 节,编写一个 Ping 程序,并能测试本局域网的所有机器是否在线。

3 实验内容

3.1 步骤

        (1)使用Socket建立网络连接。

        (2)构造ICMP报文。

        (3)发送ICMP请求并接收回显应答。

        (4)解析回显应答,进行主机在线状态的判断。

3.2 关键代码

3.2.1 发送ICMP数据报

//发送 TCP 回显请求信息
sendto(sockRaw,IcmpSendBuf,sizeof(IcmpSendBuf),0,(sockaddr*)&destSockAddr,sizeof(destSockAddr));

3.2.2 解析收到的数据报

//对数据包进行解码
BOOL DecodeIcmpResponse(char * pBuf,int iPacketSize,DECODE_RESULT &DecodeResult,BYTEICMP_ECHO_REPLY,BYTE ICMP_TIMEOUT) {//检查数据报大小的合法性IP_HEADER* pIpHdr = (IP_HEADER*)pBuf;int iIpHdrLen = pIpHdr->hdr_len * 4;if (iPacketSize < (int)(iIpHdrLen+sizeof(ICMP_HEADER)))return FALSE;//根据 ICMP 报文类型提取 ID 字段和序列号字段ICMP_HEADER *pIcmpHdr=(ICMP_HEADER *)(pBuf+iIpHdrLen);USHORT usID,usSquNo;if(pIcmpHdr->type==ICMP_ECHO_REPLY) { //ICMP 回显应答报文usID=pIcmpHdr->id; //报文 IDusSquNo=pIcmpHdr->seq; //报文序列号} else if(pIcmpHdr->type==ICMP_TIMEOUT) { //ICMP 超时差错报文char * pInnerIpHdr=pBuf+iIpHdrLen+sizeof(ICMP_HEADER); //载荷中的 IP 头int iInnerIPHdrLen=((IP_HEADER *)pInnerIpHdr)->hdr_len*4; //载荷中的 IP 头长ICMP_HEADER * pInnerIcmpHdr=(ICMP_HEADER *)(pInnerIpHdr+iInnerIPHdrLen);//载荷中的 ICMP 头usID=pInnerIcmpHdr->id; //报文 IDusSquNo=pInnerIcmpHdr->seq; //序列号} else {return false;}//检查 ID 和序列号以确定收到期待数据报if(usID!=(USHORT)GetCurrentProcessId()||usSquNo!=DecodeResult.usSeqNo) {return false;}//记录 IP 地址并计算往返时间DecodeResult.dwIPaddr.s_addr=pIpHdr->sourceIP;DecodeResult.dwRoundTripTime=GetTickCount()-DecodeResult.dwRoundTripTime;//处理正确收到的 ICMP 数据报if (pIcmpHdr->type == ICMP_ECHO_REPLY ||pIcmpHdr->type == ICMP_TIMEOUT) {//输出往返时间信息if(DecodeResult.dwRoundTripTime)cout<<" 时间="<<DecodeResult.dwRoundTripTime<<"ms"<<flush;elsecout<<" "<<"时间<1ms"<<flush;}return true;
}

4 实验结果与分析

对地址范围192.168.0.106-108进行测试,可以从打印的结果看到哪些主机在线,同时可以验证程序的正确性。

图1.1 对某个地址范围进行测试

5 代码

5.1 ping代码

刚开始我是用traceroute直接改造的,但是有问题,后面我又改了代码,这个代码的前一个版本在输入不同跳数的时候有点问题,这个最新的代码我测试不同跳数的时候是没有问题,但是不知道有没有改出其他的毛病,所以下面附上源程序在5.2

/* 程序名称:路由追踪(Tracert)程序
实现原理:Tracert 程序关键是对 IP 头部生存时间(time to live)TTL 字段的使用,程序实现时是向目
地主机发送一个 ICMP 回显请求消息,初始时 TTL 等于 1,这样当该数据报抵达途中的第一个路由器
时,TTL 的值就被减为 0,导致发生超时错误,因此该路由生成一份 ICMP 超时差错报文返回给源主
机。随后,主机将数据报的 TTL 值递增 1,以便 IP 报能传送到下一个路由器,并由下一个路由器生成
ICMP 超时差错报文返回给源主机。不断重复这个过程,直到数据报达到最终的目地主机,此时目地
主机将返回 ICMP 回显应答消息。这样,源主机只需对返回的每一份 ICMP 报文进行解析处理,就可
以掌握数据报从源主机到达目地主机途中所经过的路由信息。
*/
#include <iostream>
#include <winsock2.h>
#include <ws2tcpip.h>
#include<map>
#include<vector>
using namespace std;
#pragma comment(lib, "Ws2_32.lib")
//IP 报头
typedef struct {unsigned char hdr_len:4; 		//4 位头部长度unsigned char version:4; 		//4 位版本号unsigned char tos; 				//8 位服务类型unsigned short total_len; 		//16 位总长度unsigned short identifier; 		//16 位标识符unsigned short frag_and_flags; 	//3 位标志加 13 位片偏移unsigned char ttl; 				//8 位生存时间unsigned char protocol; 		//8 位上层协议号unsigned short checksum; 		//16 位校验和unsigned long sourceIP; 		//32 位源 IP 地址unsigned long destIP; 			//32 位目的 IP 地址
} IP_HEADER;
//ICMP 报头
typedef struct {BYTE type; 		//8 位类型字段BYTE code;		 //8 位代码字段USHORT cksum; 	//16 位校验和USHORT id; 		//16 位标识符USHORT seq; 	//16 位序列号
} ICMP_HEADER;
//报文解码结构
typedef struct {USHORT usSeqNo; 		//序列号DWORD dwRoundTripTime; 	//往返时间in_addr dwIPaddr; 		//返回报文的 IP 地址
} DECODE_RESULT;vector< pair<string,string> > IpAddressStatus1;//计算网际校验和函数
USHORT checksum(USHORT *pBuf,int iSize) {unsigned long cksum=0;while(iSize>1) {cksum+=*pBuf++;iSize-=sizeof(USHORT);}if(iSize) {cksum+=*(UCHAR *)pBuf;}cksum=(cksum>>16)+(cksum&0xffff);cksum+=(cksum>>16);return (USHORT)(~cksum);
}
//对数据包进行解码
BOOL DecodeIcmpResponse(char * pBuf,int iPacketSize,DECODE_RESULT &DecodeResult,BYTEICMP_ECHO_REPLY,BYTE ICMP_TIMEOUT) {//检查数据报大小的合法性IP_HEADER* pIpHdr = (IP_HEADER*)pBuf;int iIpHdrLen = pIpHdr->hdr_len * 4;if (iPacketSize < (int)(iIpHdrLen+sizeof(ICMP_HEADER)))return FALSE;//根据 ICMP 报文类型提取 ID 字段和序列号字段ICMP_HEADER *pIcmpHdr=(ICMP_HEADER *)(pBuf+iIpHdrLen);USHORT usID,usSquNo;if(pIcmpHdr->type==ICMP_ECHO_REPLY) { //ICMP 回显应答报文usID=pIcmpHdr->id; //报文 IDusSquNo=pIcmpHdr->seq; //报文序列号} else if(pIcmpHdr->type==ICMP_TIMEOUT) { //ICMP 超时差错报文char * pInnerIpHdr=pBuf+iIpHdrLen+sizeof(ICMP_HEADER); //载荷中的 IP 头int iInnerIPHdrLen=((IP_HEADER *)pInnerIpHdr)->hdr_len*4; //载荷中的 IP 头长ICMP_HEADER * pInnerIcmpHdr=(ICMP_HEADER *)(pInnerIpHdr+iInnerIPHdrLen);//载荷中的 ICMP 头usID=pInnerIcmpHdr->id; //报文 IDusSquNo=pInnerIcmpHdr->seq; //序列号} else {return false;}//检查 ID 和序列号以确定收到期待数据报if(usID!=(USHORT)GetCurrentProcessId()||usSquNo!=DecodeResult.usSeqNo) {return false;}
//	cout<<" pIpHdrLen="<<htons(pIpHdr->total_len); //填充序列号<<" ";cout<<" bytes="<<(int)iPacketSize-iIpHdrLen-8<<" ";cout<<"ttl="<<(int)pIpHdr->ttl<<" ";
//	cout<<"Protocol:"<<(int)pIpHdr->protocol<<"\n";//记录 IP 地址并计算往返时间DecodeResult.dwIPaddr.s_addr=pIpHdr->sourceIP;DecodeResult.dwRoundTripTime=GetTickCount()-DecodeResult.dwRoundTripTime;//处理正确收到的 ICMP 数据报if (pIcmpHdr->type == ICMP_ECHO_REPLY ||pIcmpHdr->type == ICMP_TIMEOUT) {//输出往返时间信息if(DecodeResult.dwRoundTripTime)cout<<" 时间="<<DecodeResult.dwRoundTripTime<<"ms"<<flush;elsecout<<" "<<"时间<1ms"<<flush;}return true;
}
int main(void) {//初始化 Windows sockets 网络环境WSADATA wsa;WSAStartup(MAKEWORD(2,2),&wsa);char IpAddress[255];map<string,string> IpAddressStatus;int  ip1,ip2,ip3,ip4,ip5;int cnt = 255;int maxHops = 20;int maxTimeout=1000;cout<<"请输入一个 IP 地址范围(如192.168.142.119-255,只需要输入192 168 142 119 255):";cin>>ip1>>ip2>>ip3>>ip4>>ip5;cnt=ip5-ip4;while(ip1>255||ip2>255||ip3>255||ip4>255||cnt<0) {cout<<"输入的 IP 地址范围无效!请重新输入:"<<"\n";cin>>ip1>>ip2>>ip3>>ip4>>ip5;cnt=ip5-ip4;}cout<<"请输入超时时间(ms):";cin>>maxTimeout;cout<<"最大路由跳数:";cin>>maxHops;while(cnt>=0) {
//		if(ip1>255||ip2>255||ip3>255||ip4>255||) {
//			cout<<"输入的 IP 地址范围无效!请重新输入:"<<"\n";
//			cin>>ip1>>ip2>>ip3>>ip4>>ip5;
//			cnt=ip5-ip4;
//		}sprintf(IpAddress,"%d.%d.%d.%d",ip1,ip2,ip3,ip5-cnt);cnt--;//得到 IP 地址u_long ulDestIP=inet_addr(IpAddress);cout<<"\n正在 ping 的 ip 地址:"<<IpAddress<<"\n";//转换不成功时按域名解析if(ulDestIP==INADDR_NONE) {hostent * pHostent=gethostbyname(IpAddress);if(pHostent) {ulDestIP=(*(in_addr*)pHostent->h_addr).s_addr;} else {cout<<"输入的 IP 地址或域名无效!"<<endl;WSACleanup();return 0;}}
//		cout<<"Tracing route to "<<IpAddress<<" with a maximum of "<<maxHops<<" hops.\n"<<endl;//填充目地端 socket 地址sockaddr_in destSockAddr;ZeroMemory(&destSockAddr,sizeof(sockaddr_in));destSockAddr.sin_family=AF_INET;destSockAddr.sin_addr.s_addr=ulDestIP;//创建原始套接字SOCKET sockRaw=WSASocket(AF_INET,SOCK_RAW,IPPROTO_ICMP,NULL,0,WSA_FLAG_OVERLAPPED);//超时时间int iTimeout=maxTimeout;//接收超时setsockopt(sockRaw,SOL_SOCKET,SO_RCVTIMEO,(char *)&iTimeout,sizeof(iTimeout));//发送超时
//		setsockopt(sockRaw,SOL_SOCKET,SO_SNDTIMEO,(char *)&iTimeout,sizeof(iTimeout));//构造 ICMP 回显请求消息,并以 TTL 递增的顺序发送报文//ICMP 类型字段const BYTE ICMP_ECHO_REQUEST=8; //请求回显const BYTE ICMP_ECHO_REPLY=0; //回显应答const BYTE ICMP_TIMEOUT=11; //传输超时//其他常量定义const int DEF_ICMP_DATA_SIZE=32; //ICMP 报文默认数据字段长度const int MAX_ICMP_PACKET_SIZE=1024;//ICMP 报文最大长度(包括报头)const DWORD DEF_ICMP_TIMEOUT=maxTimeout; //回显应答超时时间
//		const int DEF_MAX_HOP=30; //最大跳站数const int DEF_MAX_HOP=maxHops; //最大跳站数//填充 ICMP 报文中每次发送时不变的字段char IcmpSendBuf[sizeof(ICMP_HEADER)+DEF_ICMP_DATA_SIZE];//发送缓冲区memset(IcmpSendBuf, 0, sizeof(IcmpSendBuf)); //初始化发送缓冲区char IcmpRecvBuf[MAX_ICMP_PACKET_SIZE]; //接收缓冲区memset(IcmpRecvBuf, 0, sizeof(IcmpRecvBuf)); //初始化接收缓冲区ICMP_HEADER * pIcmpHeader=(ICMP_HEADER*)IcmpSendBuf;pIcmpHeader->type=ICMP_ECHO_REQUEST; //类型为请求回显pIcmpHeader->code=0; //代码字段为 0pIcmpHeader->id=(USHORT)GetCurrentProcessId(); //ID 字段为当前进程号memset(IcmpSendBuf+sizeof(ICMP_HEADER),'E',DEF_ICMP_DATA_SIZE);//数据字段USHORT usSeqNo=0; //ICMP 报文序列号int iTTL=1; //TTL 初始值为 1BOOL bReachDestHost=FALSE; //循环退出标志int iMaxHot=DEF_MAX_HOP; //循环的最大次数DECODE_RESULT DecodeResult; //传递给报文解码函数的结构化参数int flag=0;int ping_ttl=4;while(!bReachDestHost&&ping_ttl--) {//设置 IP 报头的 TTL 字段
//			setsockopt(sockRaw,IPPROTO_IP,IP_TTL,(char *)&iTTL,sizeof(iTTL));
//			cout<<iTTL<<flush; //输出当前序号cout<<4-ping_ttl;//填充 ICMP 报文中每次发送变化的字段((ICMP_HEADER *)IcmpSendBuf)->cksum=0; //校验和先置为 0((ICMP_HEADER *)IcmpSendBuf)->seq=htons(usSeqNo++); //填充序列号((ICMP_HEADER *)IcmpSendBuf)->cksum=checksum((USHORT *)IcmpSendBuf,sizeof(ICMP_HEADER)+DEF_ICMP_DATA_SIZE); //计算校验和//记录序列号和当前时间DecodeResult.usSeqNo=((ICMP_HEADER*)IcmpSendBuf)->seq; //当前序号DecodeResult.dwRoundTripTime=GetTickCount(); //当前时间//发送 TCP 回显请求信息sendto(sockRaw,IcmpSendBuf,sizeof(IcmpSendBuf),0,(sockaddr*)&destSockAddr,sizeof(destSockAddr));//接收 ICMP 差错报文并进行解析处理sockaddr_in from; //对端 socket 地址int iFromLen=sizeof(from); //地址结构大小int iReadDataLen; //接收数据长度while(1) {//接收数据iReadDataLen=recvfrom(sockRaw,IcmpRecvBuf,MAX_ICMP_PACKET_SIZE,0,(sockaddr*)&from,&iFromLen);
//				cout<<"iReadDataLen:"<<iReadDataLen<<"\n";
//				cout<<"IcmpRecvBuf:"<<IcmpRecvBuf<<"\n";if(iReadDataLen!=SOCKET_ERROR) { //有数据到达//对数据包进行解码if(DecodeIcmpResponse(IcmpRecvBuf,iReadDataLen,DecodeResult,ICMP_ECHO_REPLY,ICMP_TIMEOUT)) {//到达目的地,退出循环if(DecodeResult.dwIPaddr.s_addr==destSockAddr.sin_addr.s_addr)
//							bReachDestHost=true;flag=1;//输出 IP 地址cout<<'\t'<<inet_ntoa(DecodeResult.dwIPaddr)<<"\n";
//						IpAddressStatus[IpAddress] = "在线";
//						IpAddressStatus1.push_back(make_pair(IpAddress,"在线"));break;}
//					else{
//						IpAddressStatus1.push_back(make_pair(IpAddress,"在线"));
//						break;
//					}} else if(WSAGetLastError()==WSAETIMEDOUT) { //接收超时,输出*号cout<<" *"<<'\t'<<"Request timed out."<<endl;
//					IpAddressStatus1.push_back(make_pair(IpAddress,"不可达"));iTTL++;if(iTTL>6)break;break;} else {cout<<"错误\n";break;}}
//			iTTL++; //递增 TTL 值}if(flag) {IpAddressStatus1.push_back(make_pair(IpAddress,"在线"));} else {IpAddressStatus1.push_back(make_pair(IpAddress,"不可达"));}
//		if(iMaxHot <= 0) {
//			//cout<<"地址不可达\n";IpAddressStatus[IpAddress] = "不可达";
//			IpAddressStatus1.push_back(make_pair(IpAddress,"不可达"));
//		}}//迭代cout<<"----------------------------------------------------------\n";cout<<"ip 地址范围 "<<ip1<<"."<<ip2<<"."<<ip3<<"."<<ip4<<"-"<<ip5<<" 的 ping 情况:\n";for(vector< pair<string,string> > ::iterator it = IpAddressStatus1.begin(); it != IpAddressStatus1.end(); it++)cout<<(*it).first<<":\t\t"<<(*it).second<<"\n";//输出key 和value值
}

5.2 Tracert代码

/* 程序名称:路由追踪(Tracert)程序
实现原理:Tracert 程序关键是对 IP 头部生存时间(time to live)TTL 字段的使用,程序实现时是向目
地主机发送一个 ICMP 回显请求消息,初始时 TTL 等于 1,这样当该数据报抵达途中的第一个路由器
时,TTL 的值就被减为 0,导致发生超时错误,因此该路由生成一份 ICMP 超时差错报文返回给源主
机。随后,主机将数据报的 TTL 值递增 1,以便 IP 报能传送到下一个路由器,并由下一个路由器生成
ICMP 超时差错报文返回给源主机。不断重复这个过程,直到数据报达到最终的目地主机,此时目地
主机将返回 ICMP 回显应答消息。这样,源主机只需对返回的每一份 ICMP 报文进行解析处理,就可
以掌握数据报从源主机到达目地主机途中所经过的路由信息。
*/
#include <iostream>
#include <winsock2.h>
#include <ws2tcpip.h>
using namespace std;
#pragma comment(lib, "Ws2_32.lib")
//IP 报头
typedef struct {unsigned char hdr_len:4; //4 位头部长度unsigned char version:4; //4 位版本号unsigned char tos; //8 位服务类型unsigned short total_len; //16 位总长度unsigned short identifier; //16 位标识符unsigned short frag_and_flags; //3 位标志加 13 位片偏移unsigned char ttl; //8 位生存时间unsigned char protocol; //8 位上层协议号unsigned short checksum; //16 位校验和unsigned long sourceIP; //32 位源 IP 地址unsigned long destIP; //32 位目的 IP 地址
} IP_HEADER;
//ICMP 报头
typedef struct {BYTE type; //8 位类型字段BYTE code; //8 位代码字段USHORT cksum; //16 位校验和USHORT id; //16 位标识符USHORT seq; //16 位序列号
} ICMP_HEADER;
//报文解码结构
typedef struct {USHORT usSeqNo; //序列号DWORD dwRoundTripTime; //往返时间in_addr dwIPaddr; //返回报文的 IP 地址
} DECODE_RESULT;
//计算网际校验和函数
USHORT checksum(USHORT *pBuf,int iSize) {unsigned long cksum=0;while(iSize>1) {cksum+=*pBuf++;iSize-=sizeof(USHORT);}if(iSize) {cksum+=*(UCHAR *)pBuf;}cksum=(cksum>>16)+(cksum&0xffff);cksum+=(cksum>>16);return (USHORT)(~cksum);
}
//对数据包进行解码
BOOL DecodeIcmpResponse(char * pBuf,int iPacketSize,DECODE_RESULT &DecodeResult,BYTEICMP_ECHO_REPLY,BYTE ICMP_TIMEOUT) {
//检查数据报大小的合法性IP_HEADER* pIpHdr = (IP_HEADER*)pBuf;int iIpHdrLen = pIpHdr->hdr_len * 4;if (iPacketSize < (int)(iIpHdrLen+sizeof(ICMP_HEADER)))return FALSE;
//根据 ICMP 报文类型提取 ID 字段和序列号字段ICMP_HEADER *pIcmpHdr=(ICMP_HEADER *)(pBuf+iIpHdrLen);USHORT usID,usSquNo;if(pIcmpHdr->type==ICMP_ECHO_REPLY) { //ICMP 回显应答报文usID=pIcmpHdr->id; //报文 IDusSquNo=pIcmpHdr->seq; //报文序列号} else if(pIcmpHdr->type==ICMP_TIMEOUT) { //ICMP 超时差错报文char * pInnerIpHdr=pBuf+iIpHdrLen+sizeof(ICMP_HEADER); //载荷中的 IP 头int iInnerIPHdrLen=((IP_HEADER *)pInnerIpHdr)->hdr_len*4; //载荷中的 IP 头长ICMP_HEADER * pInnerIcmpHdr=(ICMP_HEADER *)(pInnerIpHdr+iInnerIPHdrLen);//载荷中的 ICMP 头usID=pInnerIcmpHdr->id; //报文 IDusSquNo=pInnerIcmpHdr->seq; //序列号} else {return false;}
//检查 ID 和序列号以确定收到期待数据报if(usID!=(USHORT)GetCurrentProcessId()||usSquNo!=DecodeResult.usSeqNo) {return false;}
//记录 IP 地址并计算往返时间DecodeResult.dwIPaddr.s_addr=pIpHdr->sourceIP;DecodeResult.dwRoundTripTime=GetTickCount()-DecodeResult.dwRoundTripTime;
//处理正确收到的 ICMP 数据报if (pIcmpHdr->type == ICMP_ECHO_REPLY ||pIcmpHdr->type == ICMP_TIMEOUT) {
//输出往返时间信息if(DecodeResult.dwRoundTripTime)cout<<" "<<DecodeResult.dwRoundTripTime<<"ms"<<flush;elsecout<<" "<<"<1ms"<<flush;}return true;
}
int main() {
//初始化 Windows sockets 网络环境WSADATA wsa;WSAStartup(MAKEWORD(2,2),&wsa);char IpAddress[255];cout<<"请输入一个 IP 地址或域名:";cin>>IpAddress;
//得到 IP 地址u_long ulDestIP=inet_addr(IpAddress);
//转换不成功时按域名解析if(ulDestIP==INADDR_NONE) {hostent * pHostent=gethostbyname(IpAddress);if(pHostent) {ulDestIP=(*(in_addr*)pHostent->h_addr).s_addr;} else {cout<<"输入的 IP 地址或域名无效!"<<endl;WSACleanup();return 0;}}cout<<"Tracing route to "<<IpAddress<<" with a maximum of 30 hops.\n"<<endl;
//填充目地端 socket 地址sockaddr_in destSockAddr;ZeroMemory(&destSockAddr,sizeof(sockaddr_in));destSockAddr.sin_family=AF_INET;destSockAddr.sin_addr.s_addr=ulDestIP;
//创建原始套接字SOCKET sockRaw=WSASocket(AF_INET,SOCK_RAW,IPPROTO_ICMP,NULL,0,WSA_FLAG_OVERLAPPED);
//超时时间int iTimeout=3000;
//接收超时setsockopt(sockRaw,SOL_SOCKET,SO_RCVTIMEO,(char *)&iTimeout,sizeof(iTimeout));
//发送超时setsockopt(sockRaw,SOL_SOCKET,SO_SNDTIMEO,(char *)&iTimeout,sizeof(iTimeout));
//构造 ICMP 回显请求消息,并以 TTL 递增的顺序发送报文
//ICMP 类型字段const BYTE ICMP_ECHO_REQUEST=8; //请求回显const BYTE ICMP_ECHO_REPLY=0; //回显应答const BYTE ICMP_TIMEOUT=11; //传输超时
//其他常量定义const int DEF_ICMP_DATA_SIZE=32; //ICMP 报文默认数据字段长度const int MAX_ICMP_PACKET_SIZE=1024;//ICMP 报文最大长度(包括报头)const DWORD DEF_ICMP_TIMEOUT=3000; //回显应答超时时间const int DEF_MAX_HOP=30; //最大跳站数
//填充 ICMP 报文中每次发送时不变的字段char IcmpSendBuf[sizeof(ICMP_HEADER)+DEF_ICMP_DATA_SIZE];//发送缓冲区memset(IcmpSendBuf, 0, sizeof(IcmpSendBuf)); //初始化发送缓冲区char IcmpRecvBuf[MAX_ICMP_PACKET_SIZE]; //接收缓冲区memset(IcmpRecvBuf, 0, sizeof(IcmpRecvBuf)); //初始化接收缓冲区ICMP_HEADER * pIcmpHeader=(ICMP_HEADER*)IcmpSendBuf;pIcmpHeader->type=ICMP_ECHO_REQUEST; //类型为请求回显pIcmpHeader->code=0; //代码字段为 0pIcmpHeader->id=(USHORT)GetCurrentProcessId(); //ID 字段为当前进程号memset(IcmpSendBuf+sizeof(ICMP_HEADER),'E',DEF_ICMP_DATA_SIZE);//数据字段USHORT usSeqNo=0; //ICMP 报文序列号int iTTL=1; //TTL 初始值为 1BOOL bReachDestHost=FALSE; //循环退出标志int iMaxHot=DEF_MAX_HOP; //循环的最大次数DECODE_RESULT DecodeResult; //传递给报文解码函数的结构化参数while(!bReachDestHost&&iMaxHot--) {
//设置 IP 报头的 TTL 字段setsockopt(sockRaw,IPPROTO_IP,IP_TTL,(char *)&iTTL,sizeof(iTTL));cout<<iTTL<<flush; //输出当前序号
//填充 ICMP 报文中每次发送变化的字段((ICMP_HEADER *)IcmpSendBuf)->cksum=0; //校验和先置为 0((ICMP_HEADER *)IcmpSendBuf)->seq=htons(usSeqNo++); //填充序列号((ICMP_HEADER *)IcmpSendBuf)->cksum=checksum((USHORT *)IcmpSendBuf,sizeof(ICMP_HEADER)+DEF_ICMP_DATA_SIZE); //计算校验和
//记录序列号和当前时间DecodeResult.usSeqNo=((ICMP_HEADER*)IcmpSendBuf)->seq; //当前序号DecodeResult.dwRoundTripTime=GetTickCount(); //当前时间
//发送 TCP 回显请求信息sendto(sockRaw,IcmpSendBuf,sizeof(IcmpSendBuf),0,(sockaddr*)&destSockAddr,sizeof(destSockAddr));
//接收 ICMP 差错报文并进行解析处理sockaddr_in from; //对端 socket 地址int iFromLen=sizeof(from); //地址结构大小int iReadDataLen; //接收数据长度while(1) {
//接收数据iReadDataLen=recvfrom(sockRaw,IcmpRecvBuf,MAX_ICMP_PACKET_SIZE,0,(sockaddr*)&from,&iFromLen);if(iReadDataLen!=SOCKET_ERROR) { //有数据到达
//对数据包进行解码if(DecodeIcmpResponse(IcmpRecvBuf,iReadDataLen,DecodeResult,ICMP_ECHO_REPLY,ICMP_TIMEOUT)) {
//到达目的地,退出循环if(DecodeResult.dwIPaddr.s_addr==destSockAddr.sin_addr.s_addr)bReachDestHost=true;
//输出 IP 地址cout<<'\t'<<inet_ntoa(DecodeResult.dwIPaddr)<<endl;break;}} else if(WSAGetLastError()==WSAETIMEDOUT) { //接收超时,输出*号cout<<" *"<<'\t'<<"Request timed out."<<endl;break;} else {break;}}iTTL++; //递增 TTL 值}
}

这篇关于计算机网络课程设计-Tracert 与 Ping 程序设计与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/621204

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal