计算机网络课程设计-Tracert 与 Ping 程序设计与实现

本文主要是介绍计算机网络课程设计-Tracert 与 Ping 程序设计与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

1 实验题目

2 实验目的

3 实验内容

3.1 步骤

3.2 关键代码

3.2.1 发送ICMP数据报

3.2.2 解析收到的数据报

4 实验结果与分析

5 代码

5.1 ping代码

5.2 Tracert代码


前言

        本实验为计算机网络课程设计内容,基本上所有代码都是根据指导书给的附录写出来的。有些实验需要实现图形界面,但是出于期末考试压力,我所有实验均是在控制台输入输出的,没有花额外时间去学习qt了,有精力的同学可以自学一下qt实现简单的图形界面。同时,该博客内容为部分报告内容,仅为大家提供参考,请勿直接抄袭。另外,本次实验所用平台是dev c++5.11

1 实验题目

        实验二 Tracert 与 Ping 程序设计与实现

2 实验目的

        了解 Tracert 程序的实现原理,并调试通过。然后参考 Tracert 程序和教材 4.4.2 节,编写一个 Ping 程序,并能测试本局域网的所有机器是否在线。

3 实验内容

3.1 步骤

        (1)使用Socket建立网络连接。

        (2)构造ICMP报文。

        (3)发送ICMP请求并接收回显应答。

        (4)解析回显应答,进行主机在线状态的判断。

3.2 关键代码

3.2.1 发送ICMP数据报

//发送 TCP 回显请求信息
sendto(sockRaw,IcmpSendBuf,sizeof(IcmpSendBuf),0,(sockaddr*)&destSockAddr,sizeof(destSockAddr));

3.2.2 解析收到的数据报

//对数据包进行解码
BOOL DecodeIcmpResponse(char * pBuf,int iPacketSize,DECODE_RESULT &DecodeResult,BYTEICMP_ECHO_REPLY,BYTE ICMP_TIMEOUT) {//检查数据报大小的合法性IP_HEADER* pIpHdr = (IP_HEADER*)pBuf;int iIpHdrLen = pIpHdr->hdr_len * 4;if (iPacketSize < (int)(iIpHdrLen+sizeof(ICMP_HEADER)))return FALSE;//根据 ICMP 报文类型提取 ID 字段和序列号字段ICMP_HEADER *pIcmpHdr=(ICMP_HEADER *)(pBuf+iIpHdrLen);USHORT usID,usSquNo;if(pIcmpHdr->type==ICMP_ECHO_REPLY) { //ICMP 回显应答报文usID=pIcmpHdr->id; //报文 IDusSquNo=pIcmpHdr->seq; //报文序列号} else if(pIcmpHdr->type==ICMP_TIMEOUT) { //ICMP 超时差错报文char * pInnerIpHdr=pBuf+iIpHdrLen+sizeof(ICMP_HEADER); //载荷中的 IP 头int iInnerIPHdrLen=((IP_HEADER *)pInnerIpHdr)->hdr_len*4; //载荷中的 IP 头长ICMP_HEADER * pInnerIcmpHdr=(ICMP_HEADER *)(pInnerIpHdr+iInnerIPHdrLen);//载荷中的 ICMP 头usID=pInnerIcmpHdr->id; //报文 IDusSquNo=pInnerIcmpHdr->seq; //序列号} else {return false;}//检查 ID 和序列号以确定收到期待数据报if(usID!=(USHORT)GetCurrentProcessId()||usSquNo!=DecodeResult.usSeqNo) {return false;}//记录 IP 地址并计算往返时间DecodeResult.dwIPaddr.s_addr=pIpHdr->sourceIP;DecodeResult.dwRoundTripTime=GetTickCount()-DecodeResult.dwRoundTripTime;//处理正确收到的 ICMP 数据报if (pIcmpHdr->type == ICMP_ECHO_REPLY ||pIcmpHdr->type == ICMP_TIMEOUT) {//输出往返时间信息if(DecodeResult.dwRoundTripTime)cout<<" 时间="<<DecodeResult.dwRoundTripTime<<"ms"<<flush;elsecout<<" "<<"时间<1ms"<<flush;}return true;
}

4 实验结果与分析

对地址范围192.168.0.106-108进行测试,可以从打印的结果看到哪些主机在线,同时可以验证程序的正确性。

图1.1 对某个地址范围进行测试

5 代码

5.1 ping代码

刚开始我是用traceroute直接改造的,但是有问题,后面我又改了代码,这个代码的前一个版本在输入不同跳数的时候有点问题,这个最新的代码我测试不同跳数的时候是没有问题,但是不知道有没有改出其他的毛病,所以下面附上源程序在5.2

/* 程序名称:路由追踪(Tracert)程序
实现原理:Tracert 程序关键是对 IP 头部生存时间(time to live)TTL 字段的使用,程序实现时是向目
地主机发送一个 ICMP 回显请求消息,初始时 TTL 等于 1,这样当该数据报抵达途中的第一个路由器
时,TTL 的值就被减为 0,导致发生超时错误,因此该路由生成一份 ICMP 超时差错报文返回给源主
机。随后,主机将数据报的 TTL 值递增 1,以便 IP 报能传送到下一个路由器,并由下一个路由器生成
ICMP 超时差错报文返回给源主机。不断重复这个过程,直到数据报达到最终的目地主机,此时目地
主机将返回 ICMP 回显应答消息。这样,源主机只需对返回的每一份 ICMP 报文进行解析处理,就可
以掌握数据报从源主机到达目地主机途中所经过的路由信息。
*/
#include <iostream>
#include <winsock2.h>
#include <ws2tcpip.h>
#include<map>
#include<vector>
using namespace std;
#pragma comment(lib, "Ws2_32.lib")
//IP 报头
typedef struct {unsigned char hdr_len:4; 		//4 位头部长度unsigned char version:4; 		//4 位版本号unsigned char tos; 				//8 位服务类型unsigned short total_len; 		//16 位总长度unsigned short identifier; 		//16 位标识符unsigned short frag_and_flags; 	//3 位标志加 13 位片偏移unsigned char ttl; 				//8 位生存时间unsigned char protocol; 		//8 位上层协议号unsigned short checksum; 		//16 位校验和unsigned long sourceIP; 		//32 位源 IP 地址unsigned long destIP; 			//32 位目的 IP 地址
} IP_HEADER;
//ICMP 报头
typedef struct {BYTE type; 		//8 位类型字段BYTE code;		 //8 位代码字段USHORT cksum; 	//16 位校验和USHORT id; 		//16 位标识符USHORT seq; 	//16 位序列号
} ICMP_HEADER;
//报文解码结构
typedef struct {USHORT usSeqNo; 		//序列号DWORD dwRoundTripTime; 	//往返时间in_addr dwIPaddr; 		//返回报文的 IP 地址
} DECODE_RESULT;vector< pair<string,string> > IpAddressStatus1;//计算网际校验和函数
USHORT checksum(USHORT *pBuf,int iSize) {unsigned long cksum=0;while(iSize>1) {cksum+=*pBuf++;iSize-=sizeof(USHORT);}if(iSize) {cksum+=*(UCHAR *)pBuf;}cksum=(cksum>>16)+(cksum&0xffff);cksum+=(cksum>>16);return (USHORT)(~cksum);
}
//对数据包进行解码
BOOL DecodeIcmpResponse(char * pBuf,int iPacketSize,DECODE_RESULT &DecodeResult,BYTEICMP_ECHO_REPLY,BYTE ICMP_TIMEOUT) {//检查数据报大小的合法性IP_HEADER* pIpHdr = (IP_HEADER*)pBuf;int iIpHdrLen = pIpHdr->hdr_len * 4;if (iPacketSize < (int)(iIpHdrLen+sizeof(ICMP_HEADER)))return FALSE;//根据 ICMP 报文类型提取 ID 字段和序列号字段ICMP_HEADER *pIcmpHdr=(ICMP_HEADER *)(pBuf+iIpHdrLen);USHORT usID,usSquNo;if(pIcmpHdr->type==ICMP_ECHO_REPLY) { //ICMP 回显应答报文usID=pIcmpHdr->id; //报文 IDusSquNo=pIcmpHdr->seq; //报文序列号} else if(pIcmpHdr->type==ICMP_TIMEOUT) { //ICMP 超时差错报文char * pInnerIpHdr=pBuf+iIpHdrLen+sizeof(ICMP_HEADER); //载荷中的 IP 头int iInnerIPHdrLen=((IP_HEADER *)pInnerIpHdr)->hdr_len*4; //载荷中的 IP 头长ICMP_HEADER * pInnerIcmpHdr=(ICMP_HEADER *)(pInnerIpHdr+iInnerIPHdrLen);//载荷中的 ICMP 头usID=pInnerIcmpHdr->id; //报文 IDusSquNo=pInnerIcmpHdr->seq; //序列号} else {return false;}//检查 ID 和序列号以确定收到期待数据报if(usID!=(USHORT)GetCurrentProcessId()||usSquNo!=DecodeResult.usSeqNo) {return false;}
//	cout<<" pIpHdrLen="<<htons(pIpHdr->total_len); //填充序列号<<" ";cout<<" bytes="<<(int)iPacketSize-iIpHdrLen-8<<" ";cout<<"ttl="<<(int)pIpHdr->ttl<<" ";
//	cout<<"Protocol:"<<(int)pIpHdr->protocol<<"\n";//记录 IP 地址并计算往返时间DecodeResult.dwIPaddr.s_addr=pIpHdr->sourceIP;DecodeResult.dwRoundTripTime=GetTickCount()-DecodeResult.dwRoundTripTime;//处理正确收到的 ICMP 数据报if (pIcmpHdr->type == ICMP_ECHO_REPLY ||pIcmpHdr->type == ICMP_TIMEOUT) {//输出往返时间信息if(DecodeResult.dwRoundTripTime)cout<<" 时间="<<DecodeResult.dwRoundTripTime<<"ms"<<flush;elsecout<<" "<<"时间<1ms"<<flush;}return true;
}
int main(void) {//初始化 Windows sockets 网络环境WSADATA wsa;WSAStartup(MAKEWORD(2,2),&wsa);char IpAddress[255];map<string,string> IpAddressStatus;int  ip1,ip2,ip3,ip4,ip5;int cnt = 255;int maxHops = 20;int maxTimeout=1000;cout<<"请输入一个 IP 地址范围(如192.168.142.119-255,只需要输入192 168 142 119 255):";cin>>ip1>>ip2>>ip3>>ip4>>ip5;cnt=ip5-ip4;while(ip1>255||ip2>255||ip3>255||ip4>255||cnt<0) {cout<<"输入的 IP 地址范围无效!请重新输入:"<<"\n";cin>>ip1>>ip2>>ip3>>ip4>>ip5;cnt=ip5-ip4;}cout<<"请输入超时时间(ms):";cin>>maxTimeout;cout<<"最大路由跳数:";cin>>maxHops;while(cnt>=0) {
//		if(ip1>255||ip2>255||ip3>255||ip4>255||) {
//			cout<<"输入的 IP 地址范围无效!请重新输入:"<<"\n";
//			cin>>ip1>>ip2>>ip3>>ip4>>ip5;
//			cnt=ip5-ip4;
//		}sprintf(IpAddress,"%d.%d.%d.%d",ip1,ip2,ip3,ip5-cnt);cnt--;//得到 IP 地址u_long ulDestIP=inet_addr(IpAddress);cout<<"\n正在 ping 的 ip 地址:"<<IpAddress<<"\n";//转换不成功时按域名解析if(ulDestIP==INADDR_NONE) {hostent * pHostent=gethostbyname(IpAddress);if(pHostent) {ulDestIP=(*(in_addr*)pHostent->h_addr).s_addr;} else {cout<<"输入的 IP 地址或域名无效!"<<endl;WSACleanup();return 0;}}
//		cout<<"Tracing route to "<<IpAddress<<" with a maximum of "<<maxHops<<" hops.\n"<<endl;//填充目地端 socket 地址sockaddr_in destSockAddr;ZeroMemory(&destSockAddr,sizeof(sockaddr_in));destSockAddr.sin_family=AF_INET;destSockAddr.sin_addr.s_addr=ulDestIP;//创建原始套接字SOCKET sockRaw=WSASocket(AF_INET,SOCK_RAW,IPPROTO_ICMP,NULL,0,WSA_FLAG_OVERLAPPED);//超时时间int iTimeout=maxTimeout;//接收超时setsockopt(sockRaw,SOL_SOCKET,SO_RCVTIMEO,(char *)&iTimeout,sizeof(iTimeout));//发送超时
//		setsockopt(sockRaw,SOL_SOCKET,SO_SNDTIMEO,(char *)&iTimeout,sizeof(iTimeout));//构造 ICMP 回显请求消息,并以 TTL 递增的顺序发送报文//ICMP 类型字段const BYTE ICMP_ECHO_REQUEST=8; //请求回显const BYTE ICMP_ECHO_REPLY=0; //回显应答const BYTE ICMP_TIMEOUT=11; //传输超时//其他常量定义const int DEF_ICMP_DATA_SIZE=32; //ICMP 报文默认数据字段长度const int MAX_ICMP_PACKET_SIZE=1024;//ICMP 报文最大长度(包括报头)const DWORD DEF_ICMP_TIMEOUT=maxTimeout; //回显应答超时时间
//		const int DEF_MAX_HOP=30; //最大跳站数const int DEF_MAX_HOP=maxHops; //最大跳站数//填充 ICMP 报文中每次发送时不变的字段char IcmpSendBuf[sizeof(ICMP_HEADER)+DEF_ICMP_DATA_SIZE];//发送缓冲区memset(IcmpSendBuf, 0, sizeof(IcmpSendBuf)); //初始化发送缓冲区char IcmpRecvBuf[MAX_ICMP_PACKET_SIZE]; //接收缓冲区memset(IcmpRecvBuf, 0, sizeof(IcmpRecvBuf)); //初始化接收缓冲区ICMP_HEADER * pIcmpHeader=(ICMP_HEADER*)IcmpSendBuf;pIcmpHeader->type=ICMP_ECHO_REQUEST; //类型为请求回显pIcmpHeader->code=0; //代码字段为 0pIcmpHeader->id=(USHORT)GetCurrentProcessId(); //ID 字段为当前进程号memset(IcmpSendBuf+sizeof(ICMP_HEADER),'E',DEF_ICMP_DATA_SIZE);//数据字段USHORT usSeqNo=0; //ICMP 报文序列号int iTTL=1; //TTL 初始值为 1BOOL bReachDestHost=FALSE; //循环退出标志int iMaxHot=DEF_MAX_HOP; //循环的最大次数DECODE_RESULT DecodeResult; //传递给报文解码函数的结构化参数int flag=0;int ping_ttl=4;while(!bReachDestHost&&ping_ttl--) {//设置 IP 报头的 TTL 字段
//			setsockopt(sockRaw,IPPROTO_IP,IP_TTL,(char *)&iTTL,sizeof(iTTL));
//			cout<<iTTL<<flush; //输出当前序号cout<<4-ping_ttl;//填充 ICMP 报文中每次发送变化的字段((ICMP_HEADER *)IcmpSendBuf)->cksum=0; //校验和先置为 0((ICMP_HEADER *)IcmpSendBuf)->seq=htons(usSeqNo++); //填充序列号((ICMP_HEADER *)IcmpSendBuf)->cksum=checksum((USHORT *)IcmpSendBuf,sizeof(ICMP_HEADER)+DEF_ICMP_DATA_SIZE); //计算校验和//记录序列号和当前时间DecodeResult.usSeqNo=((ICMP_HEADER*)IcmpSendBuf)->seq; //当前序号DecodeResult.dwRoundTripTime=GetTickCount(); //当前时间//发送 TCP 回显请求信息sendto(sockRaw,IcmpSendBuf,sizeof(IcmpSendBuf),0,(sockaddr*)&destSockAddr,sizeof(destSockAddr));//接收 ICMP 差错报文并进行解析处理sockaddr_in from; //对端 socket 地址int iFromLen=sizeof(from); //地址结构大小int iReadDataLen; //接收数据长度while(1) {//接收数据iReadDataLen=recvfrom(sockRaw,IcmpRecvBuf,MAX_ICMP_PACKET_SIZE,0,(sockaddr*)&from,&iFromLen);
//				cout<<"iReadDataLen:"<<iReadDataLen<<"\n";
//				cout<<"IcmpRecvBuf:"<<IcmpRecvBuf<<"\n";if(iReadDataLen!=SOCKET_ERROR) { //有数据到达//对数据包进行解码if(DecodeIcmpResponse(IcmpRecvBuf,iReadDataLen,DecodeResult,ICMP_ECHO_REPLY,ICMP_TIMEOUT)) {//到达目的地,退出循环if(DecodeResult.dwIPaddr.s_addr==destSockAddr.sin_addr.s_addr)
//							bReachDestHost=true;flag=1;//输出 IP 地址cout<<'\t'<<inet_ntoa(DecodeResult.dwIPaddr)<<"\n";
//						IpAddressStatus[IpAddress] = "在线";
//						IpAddressStatus1.push_back(make_pair(IpAddress,"在线"));break;}
//					else{
//						IpAddressStatus1.push_back(make_pair(IpAddress,"在线"));
//						break;
//					}} else if(WSAGetLastError()==WSAETIMEDOUT) { //接收超时,输出*号cout<<" *"<<'\t'<<"Request timed out."<<endl;
//					IpAddressStatus1.push_back(make_pair(IpAddress,"不可达"));iTTL++;if(iTTL>6)break;break;} else {cout<<"错误\n";break;}}
//			iTTL++; //递增 TTL 值}if(flag) {IpAddressStatus1.push_back(make_pair(IpAddress,"在线"));} else {IpAddressStatus1.push_back(make_pair(IpAddress,"不可达"));}
//		if(iMaxHot <= 0) {
//			//cout<<"地址不可达\n";IpAddressStatus[IpAddress] = "不可达";
//			IpAddressStatus1.push_back(make_pair(IpAddress,"不可达"));
//		}}//迭代cout<<"----------------------------------------------------------\n";cout<<"ip 地址范围 "<<ip1<<"."<<ip2<<"."<<ip3<<"."<<ip4<<"-"<<ip5<<" 的 ping 情况:\n";for(vector< pair<string,string> > ::iterator it = IpAddressStatus1.begin(); it != IpAddressStatus1.end(); it++)cout<<(*it).first<<":\t\t"<<(*it).second<<"\n";//输出key 和value值
}

5.2 Tracert代码

/* 程序名称:路由追踪(Tracert)程序
实现原理:Tracert 程序关键是对 IP 头部生存时间(time to live)TTL 字段的使用,程序实现时是向目
地主机发送一个 ICMP 回显请求消息,初始时 TTL 等于 1,这样当该数据报抵达途中的第一个路由器
时,TTL 的值就被减为 0,导致发生超时错误,因此该路由生成一份 ICMP 超时差错报文返回给源主
机。随后,主机将数据报的 TTL 值递增 1,以便 IP 报能传送到下一个路由器,并由下一个路由器生成
ICMP 超时差错报文返回给源主机。不断重复这个过程,直到数据报达到最终的目地主机,此时目地
主机将返回 ICMP 回显应答消息。这样,源主机只需对返回的每一份 ICMP 报文进行解析处理,就可
以掌握数据报从源主机到达目地主机途中所经过的路由信息。
*/
#include <iostream>
#include <winsock2.h>
#include <ws2tcpip.h>
using namespace std;
#pragma comment(lib, "Ws2_32.lib")
//IP 报头
typedef struct {unsigned char hdr_len:4; //4 位头部长度unsigned char version:4; //4 位版本号unsigned char tos; //8 位服务类型unsigned short total_len; //16 位总长度unsigned short identifier; //16 位标识符unsigned short frag_and_flags; //3 位标志加 13 位片偏移unsigned char ttl; //8 位生存时间unsigned char protocol; //8 位上层协议号unsigned short checksum; //16 位校验和unsigned long sourceIP; //32 位源 IP 地址unsigned long destIP; //32 位目的 IP 地址
} IP_HEADER;
//ICMP 报头
typedef struct {BYTE type; //8 位类型字段BYTE code; //8 位代码字段USHORT cksum; //16 位校验和USHORT id; //16 位标识符USHORT seq; //16 位序列号
} ICMP_HEADER;
//报文解码结构
typedef struct {USHORT usSeqNo; //序列号DWORD dwRoundTripTime; //往返时间in_addr dwIPaddr; //返回报文的 IP 地址
} DECODE_RESULT;
//计算网际校验和函数
USHORT checksum(USHORT *pBuf,int iSize) {unsigned long cksum=0;while(iSize>1) {cksum+=*pBuf++;iSize-=sizeof(USHORT);}if(iSize) {cksum+=*(UCHAR *)pBuf;}cksum=(cksum>>16)+(cksum&0xffff);cksum+=(cksum>>16);return (USHORT)(~cksum);
}
//对数据包进行解码
BOOL DecodeIcmpResponse(char * pBuf,int iPacketSize,DECODE_RESULT &DecodeResult,BYTEICMP_ECHO_REPLY,BYTE ICMP_TIMEOUT) {
//检查数据报大小的合法性IP_HEADER* pIpHdr = (IP_HEADER*)pBuf;int iIpHdrLen = pIpHdr->hdr_len * 4;if (iPacketSize < (int)(iIpHdrLen+sizeof(ICMP_HEADER)))return FALSE;
//根据 ICMP 报文类型提取 ID 字段和序列号字段ICMP_HEADER *pIcmpHdr=(ICMP_HEADER *)(pBuf+iIpHdrLen);USHORT usID,usSquNo;if(pIcmpHdr->type==ICMP_ECHO_REPLY) { //ICMP 回显应答报文usID=pIcmpHdr->id; //报文 IDusSquNo=pIcmpHdr->seq; //报文序列号} else if(pIcmpHdr->type==ICMP_TIMEOUT) { //ICMP 超时差错报文char * pInnerIpHdr=pBuf+iIpHdrLen+sizeof(ICMP_HEADER); //载荷中的 IP 头int iInnerIPHdrLen=((IP_HEADER *)pInnerIpHdr)->hdr_len*4; //载荷中的 IP 头长ICMP_HEADER * pInnerIcmpHdr=(ICMP_HEADER *)(pInnerIpHdr+iInnerIPHdrLen);//载荷中的 ICMP 头usID=pInnerIcmpHdr->id; //报文 IDusSquNo=pInnerIcmpHdr->seq; //序列号} else {return false;}
//检查 ID 和序列号以确定收到期待数据报if(usID!=(USHORT)GetCurrentProcessId()||usSquNo!=DecodeResult.usSeqNo) {return false;}
//记录 IP 地址并计算往返时间DecodeResult.dwIPaddr.s_addr=pIpHdr->sourceIP;DecodeResult.dwRoundTripTime=GetTickCount()-DecodeResult.dwRoundTripTime;
//处理正确收到的 ICMP 数据报if (pIcmpHdr->type == ICMP_ECHO_REPLY ||pIcmpHdr->type == ICMP_TIMEOUT) {
//输出往返时间信息if(DecodeResult.dwRoundTripTime)cout<<" "<<DecodeResult.dwRoundTripTime<<"ms"<<flush;elsecout<<" "<<"<1ms"<<flush;}return true;
}
int main() {
//初始化 Windows sockets 网络环境WSADATA wsa;WSAStartup(MAKEWORD(2,2),&wsa);char IpAddress[255];cout<<"请输入一个 IP 地址或域名:";cin>>IpAddress;
//得到 IP 地址u_long ulDestIP=inet_addr(IpAddress);
//转换不成功时按域名解析if(ulDestIP==INADDR_NONE) {hostent * pHostent=gethostbyname(IpAddress);if(pHostent) {ulDestIP=(*(in_addr*)pHostent->h_addr).s_addr;} else {cout<<"输入的 IP 地址或域名无效!"<<endl;WSACleanup();return 0;}}cout<<"Tracing route to "<<IpAddress<<" with a maximum of 30 hops.\n"<<endl;
//填充目地端 socket 地址sockaddr_in destSockAddr;ZeroMemory(&destSockAddr,sizeof(sockaddr_in));destSockAddr.sin_family=AF_INET;destSockAddr.sin_addr.s_addr=ulDestIP;
//创建原始套接字SOCKET sockRaw=WSASocket(AF_INET,SOCK_RAW,IPPROTO_ICMP,NULL,0,WSA_FLAG_OVERLAPPED);
//超时时间int iTimeout=3000;
//接收超时setsockopt(sockRaw,SOL_SOCKET,SO_RCVTIMEO,(char *)&iTimeout,sizeof(iTimeout));
//发送超时setsockopt(sockRaw,SOL_SOCKET,SO_SNDTIMEO,(char *)&iTimeout,sizeof(iTimeout));
//构造 ICMP 回显请求消息,并以 TTL 递增的顺序发送报文
//ICMP 类型字段const BYTE ICMP_ECHO_REQUEST=8; //请求回显const BYTE ICMP_ECHO_REPLY=0; //回显应答const BYTE ICMP_TIMEOUT=11; //传输超时
//其他常量定义const int DEF_ICMP_DATA_SIZE=32; //ICMP 报文默认数据字段长度const int MAX_ICMP_PACKET_SIZE=1024;//ICMP 报文最大长度(包括报头)const DWORD DEF_ICMP_TIMEOUT=3000; //回显应答超时时间const int DEF_MAX_HOP=30; //最大跳站数
//填充 ICMP 报文中每次发送时不变的字段char IcmpSendBuf[sizeof(ICMP_HEADER)+DEF_ICMP_DATA_SIZE];//发送缓冲区memset(IcmpSendBuf, 0, sizeof(IcmpSendBuf)); //初始化发送缓冲区char IcmpRecvBuf[MAX_ICMP_PACKET_SIZE]; //接收缓冲区memset(IcmpRecvBuf, 0, sizeof(IcmpRecvBuf)); //初始化接收缓冲区ICMP_HEADER * pIcmpHeader=(ICMP_HEADER*)IcmpSendBuf;pIcmpHeader->type=ICMP_ECHO_REQUEST; //类型为请求回显pIcmpHeader->code=0; //代码字段为 0pIcmpHeader->id=(USHORT)GetCurrentProcessId(); //ID 字段为当前进程号memset(IcmpSendBuf+sizeof(ICMP_HEADER),'E',DEF_ICMP_DATA_SIZE);//数据字段USHORT usSeqNo=0; //ICMP 报文序列号int iTTL=1; //TTL 初始值为 1BOOL bReachDestHost=FALSE; //循环退出标志int iMaxHot=DEF_MAX_HOP; //循环的最大次数DECODE_RESULT DecodeResult; //传递给报文解码函数的结构化参数while(!bReachDestHost&&iMaxHot--) {
//设置 IP 报头的 TTL 字段setsockopt(sockRaw,IPPROTO_IP,IP_TTL,(char *)&iTTL,sizeof(iTTL));cout<<iTTL<<flush; //输出当前序号
//填充 ICMP 报文中每次发送变化的字段((ICMP_HEADER *)IcmpSendBuf)->cksum=0; //校验和先置为 0((ICMP_HEADER *)IcmpSendBuf)->seq=htons(usSeqNo++); //填充序列号((ICMP_HEADER *)IcmpSendBuf)->cksum=checksum((USHORT *)IcmpSendBuf,sizeof(ICMP_HEADER)+DEF_ICMP_DATA_SIZE); //计算校验和
//记录序列号和当前时间DecodeResult.usSeqNo=((ICMP_HEADER*)IcmpSendBuf)->seq; //当前序号DecodeResult.dwRoundTripTime=GetTickCount(); //当前时间
//发送 TCP 回显请求信息sendto(sockRaw,IcmpSendBuf,sizeof(IcmpSendBuf),0,(sockaddr*)&destSockAddr,sizeof(destSockAddr));
//接收 ICMP 差错报文并进行解析处理sockaddr_in from; //对端 socket 地址int iFromLen=sizeof(from); //地址结构大小int iReadDataLen; //接收数据长度while(1) {
//接收数据iReadDataLen=recvfrom(sockRaw,IcmpRecvBuf,MAX_ICMP_PACKET_SIZE,0,(sockaddr*)&from,&iFromLen);if(iReadDataLen!=SOCKET_ERROR) { //有数据到达
//对数据包进行解码if(DecodeIcmpResponse(IcmpRecvBuf,iReadDataLen,DecodeResult,ICMP_ECHO_REPLY,ICMP_TIMEOUT)) {
//到达目的地,退出循环if(DecodeResult.dwIPaddr.s_addr==destSockAddr.sin_addr.s_addr)bReachDestHost=true;
//输出 IP 地址cout<<'\t'<<inet_ntoa(DecodeResult.dwIPaddr)<<endl;break;}} else if(WSAGetLastError()==WSAETIMEDOUT) { //接收超时,输出*号cout<<" *"<<'\t'<<"Request timed out."<<endl;break;} else {break;}}iTTL++; //递增 TTL 值}
}

这篇关于计算机网络课程设计-Tracert 与 Ping 程序设计与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/621204

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja