python数字图像处理基础(七)——直方图均衡化、傅里叶变换

本文主要是介绍python数字图像处理基础(七)——直方图均衡化、傅里叶变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 直方图均衡化
      • 均衡化原理
      • 均衡化效果
      • 标准直方图均衡化
      • 自适应直方图均衡化
    • 傅里叶变换
      • 原理
      • 低通滤波
      • 高通滤波

直方图均衡化

均衡化原理

图像均衡化是一种基本的图像处理技术,通过更新图像直方图的像素强度分布来调整图像的全局对比度。这样做可以使低对比度的区域在输出图像中获得更高的对比度。

简单理解:改变图像对比度,让色彩更丰富,灰度值直方图:瘦高 -> 均衡

本质上,直方图均衡化的工作原理是:

  • 1.计算图像像素强度的直方图
  • 2.均匀展开并分布最频繁的像素值(即直方图中计数最大的像素值)
  • 3.给出累积分布函数(CDF)的线性趋势

在这里插入图片描述

注意到以上直方图有许多峰值,这表明有很多像素被归入到这些各自的bin中。使用直方图均衡化,我们的目标是将这些像素分散到没有太多像素的bin中。

均衡化效果

在这里插入图片描述

注意输入图像的对比度是如何显著提高的,但代价是也提高了输入图像中的噪声的对比度。

这就提出了一个问题:是否有可能在不增加噪声的同时提高图像对比度?
答案是“是的”,你只需要应用自适应直方图均衡化

通过自适应直方图均衡化,我们将输入图像划分为M × N网格。然后我们对网格中的每个单元进行均衡处理,从而获得更高质量的输出图像:

在这里插入图片描述

标准直方图均衡化

OpenCV 包括通过以下两个函数实现基本直方图均衡和自适应直方图均衡:

cv2.equalizeHist
cv2.createCLAHE

应用cv2.equalizeHist()函数非常简单,只需将图像转换为灰度,然后调用cv2.equalizeHist即可:

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
equalized = cv2.equalizeHist(gray)

自适应直方图均衡化

实现自适应直方图均衡化要求:

1.将输入图像转换为灰度/从中提取单个通道
2.使用cv2.createCLAHE实例化CLAHE算法
3.在CLAHE对象上调用.apply()方法来应用直方图均衡化
这比听起来容易得多,只需要几行代码:

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
equalized = clahe.apply(gray)

注意,我们为cv2.createCLAHE提供了两个参数:

  • clipLimit:这是对比度限制的阈值
  • tileGridSize:将输入图像划分为M × N块,然后对每个局部块应用直方图均衡化

傅里叶变换

原理

傅里叶变换常用来分析各种滤波器的特性。可以是用2D离散傅里叶变换分析图像的频域特性。

(个人理解,在图像问题当中,频域是指图像的灰度变化,也就是灰度图像的梯度值,这个和轮廓的原理差不多,灰度值变化剧烈的叫做高频分量,例如边界和噪声。灰度值变化缓慢的称谓低频分量)

实现2D离散傅里叶变换(DFT)的的算法叫做快速傅里叶变换(FFT)。

对图像进行X方向和Y方向的傅里叶变换,会得到图像的频域表示图。

直观理解,一个正弦信号,如果幅度变换很快,可以称之为高频信号,如果变换慢,可以称之为低频信号。在图像中,灰度值变化快的位置,可以称之为高频分量(只变化快而不是次数多),灰度值变化慢的称之为低频分量

图像使用使用二维离散傅里叶变换后得到一个复数矩阵,叫做图像的频谱图。

低通滤波器:只保留低频,会使得图像模糊

高通滤波器:只保留高频,会使得图像细节增强

  • opencv中主要就是从cv2.dftt()cv2.idft(),输入图像需要先转换成np.float32格式:

    img = cv2.imread(‘lena.jpg’, 0)

    img_ float32 = np.float32(img)

    dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)

  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置(故转换后的图像从中心向四周频率增高),可以通过shift变换来实现:

    dft_shift = np.fft.fftshift(dft)

  • cv2.dft()返回的结果是复数矩阵,即双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)

    magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:, :, 0],dft_shift[:, :, 1]))

img = cv2.imread('33.jpg',0)  # 读图
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)  # 傅里叶变换
dft_shift = np.fft.fftshift(dft)  # 平移到中心,结果为双通道(实部,虚部)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:, :, 0], dft_shift[:, :, 1]))  # 转化为频谱图

理解:通过傅里叶变换,将图像转化为频谱图,而低通滤波和高通滤波则是傅里叶变换的逆变换,即通过对频谱图进行一些操作(保留低频/保留高频),从而达到改变原始图像的效果。

低通滤波

作用:将图像变得平滑,同时也就看起来比较模糊。

做法:利用掩码,把中心部分频率低的保留下来

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./image/img1.jpg', 0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags= cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape  # 横纵坐标
crow, ccol = int(rows/2), int(cols/2)  # 找到中心位置# 低通滤波制作蒙板
mask = np.zeros((rows, cols, 2), np.uint8)  # 初始化全部像素点数值置为0
mask[crow-30:crow+30, ccol-30:ccol+30] = 1  # 相当于只有中心位置60*60像素点是1,其余全为0# IDFT傅里叶逆变换 即把dft后得到的按频率分布的奇奇怪怪的图(称为频谱图)变为原来imread进来的图
fshift = dft_shift*mask  # 将掩膜和得到的结果结合,即只有中心60*60保留
f_ishift = np.fft.fftshift(fshift)  # 做逆变换,当然要把原来fft左上角移到中间的再移回左上角ifft
img_back = cv2.idft(f_ishift)  # 逆变换,频谱图还原为原图,但还不能看,因为结果是双通道(实部,虚部)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])  # 套公式处理,让图像可看plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()

高通滤波

作用:增强边缘,非边缘部分被过滤

做法:使用一个60×60的矩形窗口进行蒙板操作,去除低频分量,使用函数np.fft.ifftshift将图像中心平移回左上角,然后使用函数 np.ifft2()进行FFT逆变换,将得到的复数结果取绝对值。(DFT的逆变换)

与低通滤波唯一的区别就在蒙版的制作

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./image/img1.jpg', 0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags= cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape  # 横纵坐标
crow, ccol = int(rows/2), int(cols/2)  # 找到中心位置# 高通滤波制作蒙板
mask = np.ones((rows, cols, 2), np.uint8)  # 初始化全部像素点数值置为1
mask[crow-30:crow+30, ccol-30:ccol+30] = 0  # 相当于只有中心位置60*60像素点是0,其余全为1# IDFT傅里叶逆变换 即把dft后得到的按频率分布的奇奇怪怪的图变为原来imread进来的图
fshift = dft_shift*mask  # 将掩膜和得到的结果结合,即只有中心60*60保留
f_ishift = np.fft.fftshift(fshift)  # 做逆变换,当然要把原来fft左上角移到中间的再移回左上角ifft
img_back = cv2.idft(f_ishift)  # 逆变换,模糊频率图还原为原图,但还不能看,因为结果是双通道(实部,虚部)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])  # 套公式处理,让图像可看plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()

思想:将图像通过傅里叶变换映射到频域中进行操作,往往简单高效,最后再逆变换转化回来就好


这篇关于python数字图像处理基础(七)——直方图均衡化、傅里叶变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/618320

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.