竞赛保研 大数据商城人流数据分析与可视化 - python 大数据分析

2024-01-18 05:52

本文主要是介绍竞赛保研 大数据商城人流数据分析与可视化 - python 大数据分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于大数据的基站数据分析与可视化

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

课题背景

  • 随着当今个人手机终端的普及,出行群体中手机拥有率和使用率已达到相当高的比例,手机移动网络也基本实现了城乡空间区域的全覆盖。根据手机信号在真实地理空间上的覆盖情况,将手机用户时间序列的手机定位数据,映射至现实的地理空间位置,即可完整、客观地还原出手机用户的现实活动轨迹,从而挖掘得到人口空间分布与活动联系特征信息。移动通信网络的信号覆盖从逻辑上被设计成由若干六边形的基站小区相互邻接而构成的蜂窝网络面状服务区,手机终端总是与其中某一个基站小区保持联系,移动通信网络的控制中心会定期或不定期地主动或被动地记录每个手机终端时间序列的基站小区编号信息。
  • 商圈是现代市场中企业市场活动的空间,最初是站在商品和服务提供者的产地角度提出,后来逐渐扩展到商圈同时也是商品和服务享用者的区域。商圈划分的目的之一是为了研究潜在的顾客的分布以制定适宜的商业对策。

分析方法与过程

初步分析:

  • 手机用户在使用短信业务、通话业务、开关机、正常位置更新、周期位置更新和切入呼叫的时候均产生定位数据,定位数据记录手机用户所处基站的编号、时间和唯一标识用户的EMASI号等。历史定位数据描绘了用户的活动模式,一个基站覆盖的区域可等价于商圈,通过归纳经过基站覆盖范围的人口特征,识别出不同类别的基站范围,即可等同地识别出不同类别的商圈。衡量区域的人口特征可从人流量和人均停留时间的角度进行分析,所以在归纳基站特征时可针对这两个特点进行提取。

总体流程:

在这里插入图片描述

1.数据探索分析

EMASI号为55555的用户在2014年1月1日的定位数据
在这里插入图片描述
在这里插入图片描述

2.数据预处理

数据规约

  1. 网络类型、LOC编号和信令类型这三个属性对于挖掘目标没有用处,故剔除这三个冗余的属性。而衡量用户的停留时间并不需要精确到毫秒级,故可把毫秒这一属性删除。
  2. 把年、月和日合并记为日期,时、分和秒合并记为时间。
    在这里插入图片描述
 import numpy as np  
import pandas as pd  data=pd.read_excel(‘C://Python//DataAndCode//chapter14//demo//data//business_circle.xls’)  # print(data.head())  #删除三个冗余属性  
del data[[‘网络类型’,‘LOC编号’,‘信令类型’]]#合并年月日periods=pd.PeriodIndex(year=data['年'],month=data['月'],day=data['日'],freq='D')data['日期']=periodstime=pd.PeriodIndex(hour=data['时'],minutes=data['分'],seconds=data['秒'],freq='D')data['时间']=timedata['日期']=pd.to_datetime(data['日期'],format='%Y/%m/%d')data['时间']=pd.to_datetime(data['时间'],format='%H/%M/%S')

数据变换

假设原始数据所有用户在观测窗口期间L( 天)曾经经过的基站有 N个,用户有 M个,用户 i在 j天在 num1 基站的工作日上班时间停留时间为
weekday_num1,在 num1 基站的凌晨停留时间为night_num1 ,在num1基站的周末停留时间为weekend_num1, 在
num1基站是否停留为 stay_num1 ,设计基站覆盖范围区域的人流特征:
在这里插入图片描述

在这里插入图片描述
由于各个属性的之间的差异较大,为了消除数量级数据带来的影响,在进行聚类前,需要进行离差标准化处理。

 #- _\- coding: utf-8 -_ -  #数据标准化到[0,1]  import pandas as pd  #参数初始化  
filename = ‘…/data/business_circle.xls’ #原始数据文件  
standardizedfile = ‘…/tmp/standardized.xls’ #标准化后数据保存路径data = pd.read_excel(filename, index_col = u'基站编号') #读取数据data = (data - data.min())/(data.max() - data.min()) #离差标准化data = data.reset_index()data.to_excel(standardizedfile, index = False) #保存结果

在这里插入图片描述

3.构建模型

构建商圈聚类模型

采用层次聚类算法对建模数据进行基于基站数据的商圈聚类,画出谱系聚类图。从图可见,可把聚类类别数取3类。

 #- _\- coding: utf-8 -_ -  #谱系聚类图  
import pandas as pd  #参数初始化  
standardizedfile = ‘…/data/standardized.xls’ #标准化后的数据文件  
data = pd.read_excel(standardizedfile, index_col = u’基站编号’) #读取数据```python
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import linkage,dendrogram
#这里使用scipy的层次聚类函数Z = linkage(data, method = 'ward', metric = 'euclidean') #谱系聚类图
P = dendrogram(Z, 0) #画谱系聚类图
plt.show()
```

在这里插入图片描述

模型分析

针对聚类结果按不同类别画出4个特征的折线图。

#- _\- coding: utf-8 -_ - 
#层次聚类算法 
import pandas as pd #参数初始化 
standardizedfile = ‘…/data/standardized.xls’ #标准化后的数据文件
k = 3 #聚类数
data = pd.read_excel(standardizedfile, index_col = u’基站编号’) #读取数据from sklearn.cluster import AgglomerativeClustering #导入sklearn的层次聚类函数model = AgglomerativeClustering(n_clusters = k, linkage = 'ward')model.fit(data) #训练模型#详细输出原始数据及其类别r = pd.concat([data, pd.Series(model.labels_, index = data.index)], axis = 1)  #详细输出每个样本对应的类别r.columns = list(data.columns) + [u'聚类类别'] #重命名表头import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号style = ['ro-', 'go-', 'bo-']xlabels = [u'工作日人均停留时间', u'凌晨人均停留时间', u'周末人均停留时间', u'日均人流量']pic_output = '../tmp/type_' #聚类图文件名前缀for i in range(k): #逐一作图,作出不同样式plt.figure()tmp = r[r[u'聚类类别'] == i].iloc[:,:4] #提取每一类for j in range(len(tmp)):plt.plot(range(1, 5), tmp.iloc[j], style[i])plt.xticks(range(1, 5), xlabels, rotation = 20) #坐标标签plt.title(u'商圈类别%s' %(i+1)) #我们计数习惯从1开始plt.subplots_adjust(bottom=0.15) #调整底部plt.savefig(u'%s%s.png' %(pic_output, i+1)) #保存图片

在这里插入图片描述

对于商圈类别1,日均人流量较大,同时工作日上班时间人均停留时间、凌晨人均停留时间和周末人均停留时间相对较短,该类别基站覆盖的区域类似于商业区

在这里插入图片描述

对于商圈类别2,凌晨人均停留时间和周末人均停留时间相对较长,而工作日上班时间人均停留时间较短,日均人流量较少,该类别基站覆盖的区域类似于住宅区。

在这里插入图片描述

对于商圈类别3,这部分基站覆盖范围的工作日上班时间人均停留时间较长,同时凌晨人均停留时间、周末人均停留时间相对较短,该类别基站覆盖的区域类似于白领上班族的工作区域。

总结

商圈类别2的人流量较少,商圈类别3的人流量一般,而且白领上班族的工作区域一般的人员流动集中在上下班时间和午间吃饭时间,这两类商圈均不利于运营商的促销活动的开展,商圈类别1的人流量大,在这样的商业区有利于进行运营商的促销活动。

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

这篇关于竞赛保研 大数据商城人流数据分析与可视化 - python 大数据分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/618208

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1