ClickHouse学习笔记(六):ClickHouse物化视图使用

2024-01-17 21:52

本文主要是介绍ClickHouse学习笔记(六):ClickHouse物化视图使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1、ClickHouse 物化视图
  • 2、物化视图 vs 普通视图
  • 3、物化视图的优缺点
  • 4、物化视图的用法
    • 4.1、基本语法
    • 4.2、准备表结构
    • 4.3、准备数据
    • 4.3、查询结果

1、ClickHouse 物化视图

ClickHouse 的物化视图是一种查询结果的持久化,它的存在是为了带来查询效率的提升。用户使用物化视图时跟普通的表没有太大区别,其实它就是一张逻辑表,也像是一张时刻在预计算的表,创建的过程它是用了一个特殊引擎,加上后来 as select,就是 create 一个 table as select 的写法。

2、物化视图 vs 普通视图

普通视图:普通视图不保存数据,保存的仅是查询语句,查询的时候还是从原表读取数据,可以将普通视图理解为是个子查询。
物化视图:物化视图是把查询的结果根据相应的引擎存入到了磁盘或内存中,对数据重新进行了组织,你可以理解物化视图是完全的一张新表。

3、物化视图的优缺点

  • 优点
    • 查询速度快,要是把物化视图这些规则全部写好,它比原数据查询快了很多,总的行数少了,因为都预计算好了。
  • 缺点
    • 本质是一个流式数据的使用场景,是累加式的技术,所以要用历史数据做去重、去核这样的分析,在物化视图里面是不太好用的;
    • 如果一张表加了好多物化视图,在写这张表的时候,就会消耗很多机器的资源,比如数据带宽占满、存储一下子增加了很多;
    • 使用场景受限,并不适用于所有的场景;

4、物化视图的用法

4.1、基本语法

CREATE [MATERIALIZED] VIEW [IF NOT EXISTS] [db.]table_name [TO[db.]name]
[ENGINE = engine] [POPULATE] AS SELECT ...

使用create 创建一个物化视图,会创建一个隐藏的目标表来保存视图数据,也可以 TO 表名,保存到 一 张显式的表。没有加 TO 表名,表名默认就是 .inner.物化视图名;

4.2、准备表结构

  • 创建 pm 性能数据表

    性能表以 start_time 和 ne_name 为组合主键,day_id 为分区,ReplacingMergeTree 为合并引擎

    CREATE TABLE default.test_01_pm
    (
    `insert_time` DateTime COMMENT '插入时间',
    `start_time` String COMMENT '数据时间',
    `ne_name` String COMMENT '网元名称',
    `pm_01` String COMMENT 'pm_01',
    `pm_02` String COMMENT 'pm_02',
    `day_id` String COMMENT '天分区'
    )
    ENGINE = ReplacingMergeTree()
    PARTITION BY (day_id)
    PRIMARY KEY (start_time,ne_name)
    ORDER BY (start_time,ne_name)
    
  • 创建 cm 配置数据表
    同上,但是 cm 配置数据主键是 ne_name

    CREATE TABLE default.test_01_cm
    (
    `insert_time` DateTime COMMENT '插入时间',
    `ne_name` String COMMENT '网元名称',
    `cm_01` String COMMENT 'cm_01',
    `cm_02` String COMMENT 'cm_02',
    `day_id` String COMMENT '天分区'
    )
    ENGINE = ReplacingMergeTree()
    PARTITION BY (day_id)
    PRIMARY KEY ne_name
    ORDER BY ne_name;
    

4.3、准备数据

  • pm 性能数据
-- pm 性能数据
INSERT INTO table default.test_01_pm values(now(),'20240117080000','NE_01','100','200','2024-01-17');
INSERT INTO table default.test_01_pm values(now(),'20240117080000','NE_02','100','200','2024-01-17');
INSERT INTO table default.test_01_pm values(now(),'20240117080000','NE_03','100','200','2024-01-17');
INSERT INTO table default.test_01_pm values(now(),'20240117080000','NE_04','100','200','2024-01-17');
-- 模拟重复数据
INSERT INTO table default.test_01_pm values(now(),'20240117080000','NE_01','200','300','2024-01-17');
INSERT INTO table default.test_01_pm values(now(),'20240117080000','NE_01','500','600','2024-01-17');
  • cm 配置数据
-- cm 配置数据
INSERT INTO table default.test_01_cm values(now(),'NE_01','10','20','2024-01-17');
INSERT INTO table default.test_01_cm values(now(),'NE_02','10','20','2024-01-17');
INSERT INTO table default.test_01_cm values(now(),'NE_03','10','20','2024-01-17');
INSERT INTO table default.test_01_cm values(now(),'NE_04','10','20','2024-01-17');

4.3、查询结果

  • pm 数据查询

    select * from default.test_01_pm
    

    01

  • cm 数据查询

    select * from default.test_01_cm
    

    02

  • 创建物化视图将两个表关联起来
    通过 ne_name 将 cm 配置表中的数据关联到 pm性能表中,达到扩充表字段目的

    create materialized view test_mv 
    engine ReplacingMergeTree()
    partition by (day_id)
    primary key(start_time,ne_name)
    order by (start_time,ne_name)populate
    as
    selecta.insert_time,a.start_time,a.ne_name,a.pm_01,a.pm_02,b.cm_01,b.cm_02,a.day_id
    from`default`.test_01_pm a
    left join test_01_cm b on a.ne_name = b.ne_name
    
  • 物化视图数据查询

select * from default.test_mv

03

注意: populate 参数不建议添加,这个参数会导致历史数据的计算,如果不添加此参数则物化视图创建之后,只对新增数据进行物化视图的计算。

这篇关于ClickHouse学习笔记(六):ClickHouse物化视图使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/617330

相关文章

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.