使用Python进行钻石价格分析

2024-01-17 17:10

本文主要是介绍使用Python进行钻石价格分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

钻石是最昂贵的宝石之一。钻石的质量通常以其重量(克拉)、净度、颜色和切工来评估。重量越大、净度越高、色彩纯净、切工精细的钻石价格也越高。其中,4C标准是衡量钻石质量的国际标准,即克拉(Carat)、净度(Clarity)、颜色(Color)和切工(Cut)。

钻石价格分析

为了根据钻石的属性来分析钻石的价格,我们首先需要一个包含钻石价格的数据集。
这里有一个Kaggle上数据集地址:https://www.kaggle.com/datasets/shivam2503/diamonds,其中包含有关钻石的信息,例如:

  1. Carat
  2. Cut
  3. Colour
  4. Clarity
  5. Depth
  6. Table
  7. Price
  8. Size

导入必要的Python库和数据集:

import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as godata = pd.read_csv("diamonds.csv")
print(data.head())

输出

   Unnamed: 0  carat      cut color clarity  depth  table  price     x     y  \
0           1   0.23    Ideal     E     SI2   61.5   55.0    326  3.95  3.98   
1           2   0.21  Premium     E     SI1   59.8   61.0    326  3.89  3.84   
2           3   0.23     Good     E     VS1   56.9   65.0    327  4.05  4.07   
3           4   0.29  Premium     I     VS2   62.4   58.0    334  4.20  4.23   
4           5   0.31     Good     J     SI2   63.3   58.0    335  4.34  4.35   z  
0  2.43  
1  2.31  
2  2.31  
3  2.63  
4  2.75  

此数据集包含未命名列。在进一步处理之前删除此列:

data = data.drop("Unnamed: 0",axis=1)

现在让我们开始分析钻石价格。先来分析一下克拉数和钻石价格之间的关系,看看克拉数是如何影响钻石价格的:

figure = px.scatter(data_frame = data, x="carat",y="price", size="depth", color= "cut", trendline="ols")
figure.show()

在这里插入图片描述
我们可以看到克拉数和钻石价格之间的线性关系。这意味着克拉数越高,价格越高。

现在,通过计算钻石的大小(长度x宽度x高度)向该数据集添加一个新列:

data["size"] = data["x"] * data["y"] * data["z"]
print(data)

输出

       carat        cut color clarity  depth  table  price     x     y     z  \
0       0.23      Ideal     E     SI2   61.5   55.0    326  3.95  3.98  2.43   
1       0.21    Premium     E     SI1   59.8   61.0    326  3.89  3.84  2.31   
2       0.23       Good     E     VS1   56.9   65.0    327  4.05  4.07  2.31   
3       0.29    Premium     I     VS2   62.4   58.0    334  4.20  4.23  2.63   
4       0.31       Good     J     SI2   63.3   58.0    335  4.34  4.35  2.75   
...      ...        ...   ...     ...    ...    ...    ...   ...   ...   ...   
53935   0.72      Ideal     D     SI1   60.8   57.0   2757  5.75  5.76  3.50   
53936   0.72       Good     D     SI1   63.1   55.0   2757  5.69  5.75  3.61   
53937   0.70  Very Good     D     SI1   62.8   60.0   2757  5.66  5.68  3.56   
53938   0.86    Premium     H     SI2   61.0   58.0   2757  6.15  6.12  3.74   
53939   0.75      Ideal     D     SI2   62.2   55.0   2757  5.83  5.87  3.64   size  
0       38.202030  
1       34.505856  
2       38.076885  
3       46.724580  
4       51.917250  
...           ...  
53935  115.920000  
53936  118.110175  
53937  114.449728  
53938  140.766120  
53939  124.568444  [53940 rows x 11 columns]

现在让我们来看看钻石的大小与其价格之间的关系:

figure = px.scatter(data_frame = data, x="size",y="price", size="size", color= "cut", trendline="ols")
figure.show()

在这里插入图片描述
上图总结了钻石的两个特点:

  • 优质切工钻石比其他钻石相对较大
  • 所有类型的钻石的大小和它们的价格之间都有线性关系

现在让我们来看看所有类型的钻石的价格,根据它们的颜色:

fig = px.box(data, x="cut", y="price", color="color")
fig.show()

在这里插入图片描述
现在让我们来看看所有类型的钻石的价格,根据其净度:

fig = px.box(data, x="cut", y="price", color="clarity")
fig.show()

在这里插入图片描述
现在让我们来看看钻石价格与数据集中其他特征之间的相关性:

correlation = data.corr()
print(correlation["price"].sort_values(ascending=False))

输出

price    1.000000
carat    0.921591
size     0.902385
x        0.884435
y        0.865421
z        0.861249
table    0.127134
depth   -0.010647
Name: price, dtype: float64

钻石价格预测

现在,将通过使用上述钻石价格分析中的所有必要信息来预测钻石价格。

在继续之前,转换切割列的值,因为钻石的切割类型是预测钻石价格的一个有价值的特征。要使用此列,我们需要将其分类值转换为数值。下面是我们如何将其转换为数字功能:

data["cut"] = data["cut"].map({"Ideal": 1, "Premium": 2, "Good": 3,"Very Good": 4,"Fair": 5})

现在,让我们将数据分为训练集和测试集:

#splitting data
from sklearn.model_selection import train_test_split
x = np.array(data[["carat", "cut", "size"]])
y = np.array(data[["price"]])xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.10, random_state=42)

训练一个机器学习模型来完成钻石价格预测的任务:

from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor()
model.fit(xtrain, ytrain)

下面是我们如何使用机器学习模型来预测钻石的价格:

print("Diamond Price Prediction")
a = float(input("Carat Size: "))
b = int(input("Cut Type (Ideal: 1, Premium: 2, Good: 3, Very Good: 4, Fair: 5): "))
c = float(input("Size: "))
features = np.array([[a, b, c]])
print("Predicted Diamond's Price = ", model.predict(features))

输出

Diamond Price Prediction
Carat Size: 0.60
Cut Type (Ideal: 1, Premium: 2, Good: 3, Very Good: 4, Fair: 5): 2
Size: 40
Predicted Diamond's Price =  [937.13946429]

总结

因此,这就是如何使用Python进行钻石价格分析和预测的任务。根据钻石价格分析,我们可以说优质钻石的价格和尺寸都高于其他类型的钻石。

这篇关于使用Python进行钻石价格分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616700

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D