钻石价格预测的ML全流程!从模型构建调优道部署应用!⛵

2024-01-17 17:10

本文主要是介绍钻石价格预测的ML全流程!从模型构建调优道部署应用!⛵,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

💡 作者:韩信子@ShowMeAI
📘 数据分析 ◉ 技能提升系列:http://www.showmeai.tech/tutorials/33
📘 AI 面试题库系列:http://www.showmeai.tech/tutorials/48
📘 本文地址:http://www.showmeai.tech/article-detail/302
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏ShowMeAI查看更多精彩内容

我们经常会谈到工业界端到端的机器学习建模,所谓端到端,是指的把整个过程构建在一个完整的流程(比如pipeline管道)中,包括数据侧的处理、模型建模调优,及模型部署应用等环节,如我们之前所说,完整的机器学习开发流程如下:

在本篇内容中,ShowMeAI将给大家讲解到下述内容:

  • 使用 PyCaret 构建端到端机器学习管道
  • ML 模型部署 & FastAPI 开发实时预测

💡 工具库

📌 PyCaret

PyCaret 是一个开源的低代码机器学习库,内置Python端到端模型管理工具,被用于自动化机器学习工作流。因其易用性、简单性以及快速高效地构建和部署端到端 ML 原型的能力而广受欢迎。

更多有关 PyCaret 的信息,可以在官方 📘 GitHub 查看。

我们先通过 pip 安装 pycaret 工具库:

pip install pycaret

📌 FastAPI

FastAPI 是一个快速(高性能)的Web框架,主要特点是:

  • 快速 :非常高的性能,是目前可用的最快的 Python 框架之一 。
  • 快速编码 :将开发速度提高2到3倍。
  • 简单 :易于学习和使用。

更多有关 FastAPI 的信息,请查看官方 📘 GitHub

我们也通过 pip 安装 fastapi:

pip install fastapi

💡 业务背景

本篇内容中涉及的案例来自达顿商学院(案例研究发表在 📘 哈佛商学院),案例中收集了 6000 颗钻石的数据,包括它们的价格和切工、颜色、形状等属性。

🏆 实战数据集下载(百度网盘):公众号『ShowMeAI研究中心』回复『实战』,或者点击 这里 获取本文 [13] 钻石价格预测的ML全流程!从模型构建调优道部署应用! 『** pycaret-master 数据集**』

ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub

💡 数据

我们在本篇内容中,使用钻石的克拉重量、切工、颜色和其他特征等属性来预测钻石的价格。 数据集可从 📘 此处下载。

# 加载数据
from pycaret.datasets import get_data
data = get_data('diamond')

💡 探索性数据分析

我们先做一些快速数据分析和可视化来评估数据字段属性(重量、切工、颜色、净度等)与目标变量/标签Price的关系。

# 绘制carat_weight和Price的散点图
import plotly.express as px
fig = px.scatter(x=data['Carat Weight'], y=data['Price'], facet_col = data['Cut'], opacity = 0.25, template = 'plotly_dark', trendline='ols', trendline_color_override = 'red', title = 'SARAH GETS A DIAMOND - A CASE STUDY')
fig.show()

我们绘制并了解一下目标变量Price的分布。

# 绘制灰度图查看分布
fig = px.histogram(data, x=["Price"], template = 'plotly_dark', title = 'Histogram of Price')
fig.show()

可以从上图看出Price是明显右偏分布的,对于有偏的分布,我们可以做一些数据变换以调整数据分布,比如对数变换,下面我们先用对数变换对Price进行处理。

import numpy as np# 构建一份数据备份
data_copy = data.copy()# log对数变换
data_copy['Log_Price'] = np.log(data['Price'])# 绘制灰度图查看分布
fig = px.histogram(data_copy, x=["Log_Price"], title = 'Histgram of Log Price', template = 'plotly_dark')fig.show()

大家可以明显看到,经过log变换后的数据分布,更加接近正态分布。

💡 数据准备

我们先导入PyCaret工具库,并做基本的设置。

# 初始化
from pycaret.regression import *
s = setup(data, target = 'Price', transform_target = True)

注意上面的 transform_target = True,PyCaret会对Price字段使用 box-cox 变换,这个变换与对数转换是类似的,也能对有偏分布进行校正。

💡 模型选择&训练&调优

数据准备完毕后,我们使用模型对其进行训练,pycaret中最简单的方式是使用 compare_models函数,它使用交叉验证来训练和评估模型库中可用的模型,它的返回值是具有平均交叉验证分数的评分网格。 这个过程只需要下列简单代码:

# 对所有可用模型进行实验和评估
best = compare_models()

上图是最终的实验结果,我们可以看到,对所有模型使用平均绝对误差 (MAE) 评估,CatBoost Regressor模型有最好的效果。

# 训练模型的预估结果残差
plot_model(best, plot = 'residuals_interactive')
# 输出特征重要度
plot_model(best, plot = 'feature')

💡 模型保存

我们把最优模型保存为 pickle 文件。

# 最佳模型
final_best = finalize_model(best)# 存储模型
save_model(final_best, 'diamond-pipeline')

💡 模型部署

下面我们演示使用FastAPI框架快速构建模型服务,并提供实时预估的能力。

# 导入工具库
import pandas as pd
from pycaret.regression import load_model, predict_model
from fastapi import FastAPI
import uvicorn# 构建app对象
app = FastAPI()# 加载模型
model = load_model('diamond-pipeline')# 定义预估函数
@app.post('/predict')
def predict(carat_weight, cut, color, clarity, polish, symmetry, report):data = pd.DataFrame([[carat_weight, cut, color, clarity, polish, symmetry, report]])data.columns = ['Carat Weight', 'Cut', 'Color', 'Clarity', 'Polish', 'Symmetry', 'Report']predictions = predict_model(model, data=data) return {'prediction': int(predictions['Label'][0])}if __name__ == '__main__':uvicorn.run(app, host='127.0.0.1', port=8000)

接下来可以通过终端命令行运行以下命令来运行这个服务,大家确保运行命令的路径和上述python脚本和以及模型存储pickle文件在同一位置。

uvicorn main:app --reload

命令执行完后,我们就在 localhost 上初始化 API 服务了,大家在浏览器上输入 http://localhost:8000/docs ,会显示如下内容:

点击页面中绿色的 POST 按钮,它将打开一个像这样的表单:

点击右上角的『Try it out』 ,在表单填入一些值,然后点击『Execute』,我们会看到以下响应:

我们可以使用 python 的 requests 库测试一下,远程发起请求是否可以得到结果,如下图所示:

大家可以看看,我们通过传参的方式对模型服务发起请求,并得到返回结果。

参考资料

  • 🏆 实战数据集下载(百度网盘):公众号『ShowMeAI研究中心』回复『实战』,或者点击 这里 获取本文 [13] 钻石价格预测的ML全流程!从模型构建调优道部署应用! 『** pycaret-master 数据集**』
  • ShowMeAI官方GitHub:https://github.com/ShowMeAI-Hub
  • 📘 PyCaret GitHub:https://www.github.com/pycaret/pycaret
  • 📘 FastAPI GitHub:https://github.com/tiangolo/fastapi
  • 📘 哈佛商学院 Sarah Gets a Diamond:https://hbsp.harvard.edu/product/UV0869-PDF-ENG

这篇关于钻石价格预测的ML全流程!从模型构建调优道部署应用!⛵的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616699

相关文章

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

将Java项目提交到云服务器的流程步骤

《将Java项目提交到云服务器的流程步骤》所谓将项目提交到云服务器即将你的项目打成一个jar包然后提交到云服务器即可,因此我们需要准备服务器环境为:Linux+JDK+MariDB(MySQL)+Gi... 目录1. 安装 jdk1.1 查看 jdk 版本1.2 下载 jdk2. 安装 mariadb(my

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念