1019机器翻译与数据集

2024-01-17 13:40
文章标签 数据 机器翻译 1019

本文主要是介绍1019机器翻译与数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

语言模型是自然语言处理的关键, 而机器翻译是语言模型最成功的基准测试。
因为机器翻译正是将输入序列转换成输出序列的 序列转换模型(sequence transduction)的核心问题。

机器翻译(machine translation)指的是 将序列从一种语言自动翻译成另一种语言。

统计机器翻译(statisticalmachine translation)涉及了 翻译模型和语言模型等组成部分的统计分析
基于神经网络的方法通常被称为 神经机器翻译(neuralmachine translation)
用于将两种翻译模型区分开来。

机器翻译的数据集是由源语言和目标语言的文本序列对组成的,要一种完全不同的方法来预处理机器翻译数据集.

import os
import torch
from d2l import torch as d2l

 下载和预处理数据集
下载一个由Tatoeba项目的双语句子对 组成的“英-法”数据集,数据集中的每一行都是制表符分隔的文本序列对, 序列对由英文文本序列和翻译后的法语文本序列组成。
在这个将英语翻译成法语的机器翻译问题中, 英语是源语言(source language), 法语是目标语言(target language)。

# 下载和预处理数据集
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')def read_data_nmt():"""载入 “英语-法语” 数据集 """data_dir = d2l.download_extract('fra-eng')with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:return f.read()raw_text = read_data_nmt()
print(raw_text[:75])

下载数据集后,原始文本数据需要经过几个预处理步骤。 例如,我们用空格代替不间断空格(non-breaking space), 使用小写字母替换大写字母,并在单词和标点符号之间插入空格。

# 几个预处理步骤
def preprocess_nmt(text):"""预处理 “英语-法语” 数据集"""def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' 'text = text.replace('\u202f', ' ').replace('\xa0',' ').lower()out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else charfor i, char in enumerate(text)]return ''.join(out)text = preprocess_nmt(raw_text)
print(text[:80])

词元化
在机器翻译中,我们更喜欢单词级词元化 (最先进的模型可能使用更高级的词元化技术)。
下面的tokenize_nmt函数对前num_examples个文本序列对进行词元, 其中每个词元要么是一个词,要么是一个标点符号。 此函数返回两个词元列表:source和target:

# 词元化
def tokenize_nmt(text, num_examples=None):"""词元化 “英语-法语” 数据数据集 """source, target = [], []for i, line in enumerate(text.split('\n')):if num_examples and i > num_examples:breakparts = line.split('\t')if len(parts) == 2:source.append(parts[0].split(' ')) # 英语target.append(parts[1].split(' ')) # 法语return source, targetsource, target = tokenize_nmt(text)
source[:6], target[:6]# 绘制每个文本序列所包含的标记数量的直方图,根据句子长度做的直方图
d2l.set_figsize()
_, _, patches = d2l.plt.hist([[len(l)for l in source], [len(l) for l in target]],label = ['source','target'])
for patch in patches[1].patches:patch.set_hatch('/')
d2l.plt.legend(loc='upper right')

词表
由于机器翻译数据集由语言对组成, 因此我们可以分别为源语言和目标语言构建两个词表。
使用单词级词元化时,词表大小将明显大于使用字符级词元化时的词表大小。

# 词汇表
src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>','<bos>','<eos>']) # bos 表示句子开始,eos表示句子结束,min_freq=2表示句子长度小于2个就不要了  
len(src_vocab)

为了缓解这一问题,这里我们将出现次数少于2次的低频率词元 视为相同的未知(“”)词元。
除此之外,我们还指定了额外的特定词元, 例如在小批量时用于将序列填充到相同长度的填充词元(“”), 以及序列的开始词元(“”)和结束词元(“”)。
这些特殊词元在自然语言处理任务中比较常用。

# 序列样本都有一个固定长度截断或填充文本序列
def truncate_pad(line, num_steps, padding_token):"""截断或填充文本序列"""if len(line) > num_steps:return line[:num_steps]return line + [padding_token] * (num_steps - len(line))truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])

加载数据集
在机器翻译中,每个样本都是由源和目标组成的文本序列对, 其中的每个文本序列可能具有不同的长度。

为了提高计算效率,我们仍然可以通过截断(truncation)和 填充(padding)方式实现一次只处理一个小批量的文本序列。
假设同一个小批量中的每个序列都应该具有相同的长度num_steps, 那么如果文本序列的词元数目少于num_steps时, 我们将继续在其末尾添加特定的“”词元, 直到其长度达到num_steps; 反之,我们将截断文本序列时,只取其前num_steps 个词元, 并且丢弃剩余的词元。
这样,每个文本序列将具有相同的长度, 以便以相同形状的小批量进行加载

如前所述,下面的truncate_pad函数将截断或填充文本序列。

# 转换成小批量数据集用于训练
def build_array_nmt(lines, vocab, num_steps):"""将机器翻译的文本序列转换成小批量"""lines = [vocab[l] for l in lines]lines = [l + [vocab['<eos>']] for l in lines] # 每个句子后面加了一个截止符array = torch.tensor([ truncate_pad(l, num_steps, vocab['<pad>']) for l in lines ])valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)return array, valid_len # valid_len 为原始句子的实际长度

现在我们定义一个函数,可以将文本序列 转换成小批量数据集用于训练。
我们将特定的“”词元添加到所有序列的末尾, 用于表示序列的结束。
当模型通过一个词元接一个词元地生成序列进行预测时, 生成的“”词元说明完成了序列输出工作。
此外,我们还记录了每个文本序列的长度, 统计长度时排除了填充词元, 在稍后将要介绍的一些模型会需要这个长度信息

# 训练模型
def load_data_nmt(batch_size, num_steps, num_examples=600):"""返回翻译数据集的迭代器和词汇表"""text = preprocess_nmt(read_data_nmt())source, target = tokenize_nmt(text, num_examples)src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>','<bos>','<eos>'])tgt_vocab = d2l.Vocab(target, min_freq=2,reserved_tokens=['<pad>','<bos>','<eos>'])src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)  tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)data_iter = d2l.load_array(data_arrays, batch_size)return data_iter, src_vocab, tgt_vocab

训练模型
最后,我们定义load_data_nmt函数来返回数据迭代器, 以及源语言和目标语言的两种词表。

# 读出 “英语-法语” 数据集中第一个小批量数据
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)  
for X, X_valid_len, Y, Y_valid_len in train_iter:print('X:', X.type(torch.int32))print('valid lengths for X:', X_valid_len)print('Y:', Y.type(torch.int32))print('valid lengths for Y:', Y_valid_len)break


 小结
机器翻译指的是将文本序列从一种语言自动翻译成另一种语言。

使用单词级词元化时的词表大小,将明显大于使用字符级词元化时的词表大小。

为了缓解这一问题,我们可以将低频词元视为相同的未知词元。

通过截断和填充文本序列,可以保证所有的文本序列都具有相同的长度,以便以小批量的方式加载。

 

这篇关于1019机器翻译与数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616231

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元