1019机器翻译与数据集

2024-01-17 13:40
文章标签 数据 机器翻译 1019

本文主要是介绍1019机器翻译与数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

语言模型是自然语言处理的关键, 而机器翻译是语言模型最成功的基准测试。
因为机器翻译正是将输入序列转换成输出序列的 序列转换模型(sequence transduction)的核心问题。

机器翻译(machine translation)指的是 将序列从一种语言自动翻译成另一种语言。

统计机器翻译(statisticalmachine translation)涉及了 翻译模型和语言模型等组成部分的统计分析
基于神经网络的方法通常被称为 神经机器翻译(neuralmachine translation)
用于将两种翻译模型区分开来。

机器翻译的数据集是由源语言和目标语言的文本序列对组成的,要一种完全不同的方法来预处理机器翻译数据集.

import os
import torch
from d2l import torch as d2l

 下载和预处理数据集
下载一个由Tatoeba项目的双语句子对 组成的“英-法”数据集,数据集中的每一行都是制表符分隔的文本序列对, 序列对由英文文本序列和翻译后的法语文本序列组成。
在这个将英语翻译成法语的机器翻译问题中, 英语是源语言(source language), 法语是目标语言(target language)。

# 下载和预处理数据集
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip','94646ad1522d915e7b0f9296181140edcf86a4f5')def read_data_nmt():"""载入 “英语-法语” 数据集 """data_dir = d2l.download_extract('fra-eng')with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:return f.read()raw_text = read_data_nmt()
print(raw_text[:75])

下载数据集后,原始文本数据需要经过几个预处理步骤。 例如,我们用空格代替不间断空格(non-breaking space), 使用小写字母替换大写字母,并在单词和标点符号之间插入空格。

# 几个预处理步骤
def preprocess_nmt(text):"""预处理 “英语-法语” 数据集"""def no_space(char, prev_char):return char in set(',.!?') and prev_char != ' 'text = text.replace('\u202f', ' ').replace('\xa0',' ').lower()out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else charfor i, char in enumerate(text)]return ''.join(out)text = preprocess_nmt(raw_text)
print(text[:80])

词元化
在机器翻译中,我们更喜欢单词级词元化 (最先进的模型可能使用更高级的词元化技术)。
下面的tokenize_nmt函数对前num_examples个文本序列对进行词元, 其中每个词元要么是一个词,要么是一个标点符号。 此函数返回两个词元列表:source和target:

# 词元化
def tokenize_nmt(text, num_examples=None):"""词元化 “英语-法语” 数据数据集 """source, target = [], []for i, line in enumerate(text.split('\n')):if num_examples and i > num_examples:breakparts = line.split('\t')if len(parts) == 2:source.append(parts[0].split(' ')) # 英语target.append(parts[1].split(' ')) # 法语return source, targetsource, target = tokenize_nmt(text)
source[:6], target[:6]# 绘制每个文本序列所包含的标记数量的直方图,根据句子长度做的直方图
d2l.set_figsize()
_, _, patches = d2l.plt.hist([[len(l)for l in source], [len(l) for l in target]],label = ['source','target'])
for patch in patches[1].patches:patch.set_hatch('/')
d2l.plt.legend(loc='upper right')

词表
由于机器翻译数据集由语言对组成, 因此我们可以分别为源语言和目标语言构建两个词表。
使用单词级词元化时,词表大小将明显大于使用字符级词元化时的词表大小。

# 词汇表
src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>','<bos>','<eos>']) # bos 表示句子开始,eos表示句子结束,min_freq=2表示句子长度小于2个就不要了  
len(src_vocab)

为了缓解这一问题,这里我们将出现次数少于2次的低频率词元 视为相同的未知(“”)词元。
除此之外,我们还指定了额外的特定词元, 例如在小批量时用于将序列填充到相同长度的填充词元(“”), 以及序列的开始词元(“”)和结束词元(“”)。
这些特殊词元在自然语言处理任务中比较常用。

# 序列样本都有一个固定长度截断或填充文本序列
def truncate_pad(line, num_steps, padding_token):"""截断或填充文本序列"""if len(line) > num_steps:return line[:num_steps]return line + [padding_token] * (num_steps - len(line))truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])

加载数据集
在机器翻译中,每个样本都是由源和目标组成的文本序列对, 其中的每个文本序列可能具有不同的长度。

为了提高计算效率,我们仍然可以通过截断(truncation)和 填充(padding)方式实现一次只处理一个小批量的文本序列。
假设同一个小批量中的每个序列都应该具有相同的长度num_steps, 那么如果文本序列的词元数目少于num_steps时, 我们将继续在其末尾添加特定的“”词元, 直到其长度达到num_steps; 反之,我们将截断文本序列时,只取其前num_steps 个词元, 并且丢弃剩余的词元。
这样,每个文本序列将具有相同的长度, 以便以相同形状的小批量进行加载

如前所述,下面的truncate_pad函数将截断或填充文本序列。

# 转换成小批量数据集用于训练
def build_array_nmt(lines, vocab, num_steps):"""将机器翻译的文本序列转换成小批量"""lines = [vocab[l] for l in lines]lines = [l + [vocab['<eos>']] for l in lines] # 每个句子后面加了一个截止符array = torch.tensor([ truncate_pad(l, num_steps, vocab['<pad>']) for l in lines ])valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)return array, valid_len # valid_len 为原始句子的实际长度

现在我们定义一个函数,可以将文本序列 转换成小批量数据集用于训练。
我们将特定的“”词元添加到所有序列的末尾, 用于表示序列的结束。
当模型通过一个词元接一个词元地生成序列进行预测时, 生成的“”词元说明完成了序列输出工作。
此外,我们还记录了每个文本序列的长度, 统计长度时排除了填充词元, 在稍后将要介绍的一些模型会需要这个长度信息

# 训练模型
def load_data_nmt(batch_size, num_steps, num_examples=600):"""返回翻译数据集的迭代器和词汇表"""text = preprocess_nmt(read_data_nmt())source, target = tokenize_nmt(text, num_examples)src_vocab = d2l.Vocab(source, min_freq=2,reserved_tokens=['<pad>','<bos>','<eos>'])tgt_vocab = d2l.Vocab(target, min_freq=2,reserved_tokens=['<pad>','<bos>','<eos>'])src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)  tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)data_iter = d2l.load_array(data_arrays, batch_size)return data_iter, src_vocab, tgt_vocab

训练模型
最后,我们定义load_data_nmt函数来返回数据迭代器, 以及源语言和目标语言的两种词表。

# 读出 “英语-法语” 数据集中第一个小批量数据
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)  
for X, X_valid_len, Y, Y_valid_len in train_iter:print('X:', X.type(torch.int32))print('valid lengths for X:', X_valid_len)print('Y:', Y.type(torch.int32))print('valid lengths for Y:', Y_valid_len)break


 小结
机器翻译指的是将文本序列从一种语言自动翻译成另一种语言。

使用单词级词元化时的词表大小,将明显大于使用字符级词元化时的词表大小。

为了缓解这一问题,我们可以将低频词元视为相同的未知词元。

通过截断和填充文本序列,可以保证所有的文本序列都具有相同的长度,以便以小批量的方式加载。

 

这篇关于1019机器翻译与数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/616231

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类