【MindSpore两日训练营第五期笔记】导出MindIR格式模型

本文主要是介绍【MindSpore两日训练营第五期笔记】导出MindIR格式模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、MindIR 概述

MindSpore通过统一IR定义了网络的逻辑结构和算子的属性,将MindIR格式的模型文件
与硬件平台解耦,实现一次训练多次部署。
MindIR作为MindSpore的统一模型文件,同时存储了网络结构和权重参数值。同时支持
部署到云端Serving和端侧Lite平台执行推理任务。
同一个MindIR文件支持多种硬件形态的部署:
- Serving部署推理
- 端侧Lite推理部署

二、名词解释

Checkpoint
• 采用了Protocol Buffers格式,存储了网络中所有的参数值。
• 一般用于训练任务中断后恢复训练,或训练后的微调(Fine Tune)任务。
•MindIR
• 全称MindSpore IR,是MindSpore的一种基于图表示的函数式IR,定义了可扩展的图
结构以及算子的IR表示。
• 它消除了不同后端的模型差异,一般用于跨硬件平台执行推理任务。
•ONNX
• 全称Open Neural Network Exchange,是一种针对机器学习模型的通用表达。
• 一般用于不同框架间的模型迁移或在推理引擎(TensorRT)上使用。
•AIR
• 全称Ascend Intermediate Representation,是华为定义的针对机器学习所设计的开放式
文件格式。
• 它能更好地适应华为AI处理器,一般用于Ascend 310上执行推理任务。

三、导出LeNet网络的MindIR格式模型

1.训练LeNet模型生成checkpoint

LeNet训练代码选用MindSpore官方代码仓中modelzool中的代码

地址:https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet

2.MNIST数据下载地址

1)官方下载地址:http://yann.lecun.com/exdb/mnist/

2)网盘下载:链接: https://pan.baidu.com/s/1zX-OwL8bOgq4dhEuaRj2Xg 提取码: zew6

MNIST数据集下载完成后解压到代码根目录下

3.执行训练命令

python train.py --data_path ./MNIST_DATA/ --ckpt_path=./checkpoint/ --device_target Ascend

注:我使用的是昇腾平台进行模型训练,如果使用CPU或者GPU进行训练的话device_target后面改为对应的就好

当屏幕出现epoch、loss等数值时模型就开始进行训练了

4.得到checkpoint

当模型训练参数中指定的ckpt_path文件夹中出现ckpt文件就代表训练成功了。接下去我们可以选择一个ckpt文件进行转换mindir格式。这里我选择checkpoint_lenet-10_1875.ckpt

5.编写模型转换代码

import numpy as np
from mindspore import Tensor, export, load_checkpoint, load_param_into_net
from src.lenet import LeNet5lenet = LeNet5()
# load the parameter into net
load_checkpoint("./checkpoint/checkpoint_lenet-10_1875.ckpt", net=lenet)  #checkpoint_lenet-10_1875.ckpt更换成对应所需要转换的ckpt文件
input = np.random.uniform(0.0, 1.0, size=[32, 1, 32, 32]).astype(np.float32)  #Lenet模型的size为32,1,32,32
export(lenet, Tensor(input), file_name='lenet-10_1875', file_format='MINDIR') #file_name指定转换后文件的文件名

6.执行模型转换代码

python lenet_mindr.py

执行完毕后查看代码根目录下如果存在前面我们指定的lenet-10_1875.mindir文件的话就代表模型转化成功了!

四、导出ResNet50网络的MindIR格式模型

1.训练ResNet50网络生成checkpoint

ResNet50模型训练代码依旧使用MindSpore官方代码仓中modelzoo的代码,链接:https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/resnet

2.Cifar10数据集

因为ImageNet数据集比较庞大训练需要比较久的时间,所以这边我们采用cifar10数据集进行模型训练

1)Cifar10数据集官方下载:http://www.cs.toronto.edu/~kriz/cifar.html

2) 百度网盘下载:链接: https://pan.baidu.com/s/1CpgjFtZk2ZQsr_qUtc6z1g 提取码: kjhi

3.执行训练命令

python train.py --net resnet50 --dataset cifar10 --dataset_path ./data/cifar10-bin/train/  --device_target Ascend

注:我使用的是昇腾平台进行模型训练,如果使用CPU或者GPU进行训练的话device_target后面改为对应的就好

当屏幕出现epoch、loss等数值时模型就开始进行训练了

4.获取checkpoint

当模型训练参数中指定的ckpt_path文件夹中出现ckpt文件就代表训练成功了。接下去我们可以选择一个ckpt文件进行转换mindir格式。这里我选择resnet-90_1562.ckpt

5.编写模型转换脚本

import numpy as np
from mindspore import Tensor, export, load_checkpoint, load_param_into_net
from src.resnet import resnet50 as ResNet50resnet = ResNet50()
# load the parameter into net
load_checkpoint("./checkpoint/resnet-90_1562.ckpt", net=resnet)
input = np.random.uniform(0.0, 1.0, size=[32, 3, 224, 224]).astype(np.float32)
export(resnet, Tensor(input), file_name='resnet-90_162', file_format='MINDIR')

6.执行模型转换

python resnet_mindir.py

执行完毕后查看代码根目录下如果存在前面我们指定的resnet-90_1562.mindir文件的话就代表模型转化成功了!

转自文章链接:【MindSpore两日训练营第五期笔记】导出MindIR格式模型_MindSpore_昇腾论坛_华为云论坛

感谢作者的努力与分享,侵权立删!

这篇关于【MindSpore两日训练营第五期笔记】导出MindIR格式模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615759

相关文章

使用EasyPoi快速导出Word文档功能的实现步骤

《使用EasyPoi快速导出Word文档功能的实现步骤》EasyPoi是一个基于ApachePOI的开源Java工具库,旨在简化Excel和Word文档的操作,本文将详细介绍如何使用EasyPoi快速... 目录一、准备工作1、引入依赖二、准备好一个word模版文件三、编写导出方法的工具类四、在Export

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

springboot集成easypoi导出word换行处理过程

《springboot集成easypoi导出word换行处理过程》SpringBoot集成Easypoi导出Word时,换行符n失效显示为空格,解决方法包括生成段落或替换模板中n为回车,同时需确... 目录项目场景问题描述解决方案第一种:生成段落的方式第二种:替换模板的情况,换行符替换成回车总结项目场景s

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC