机器人持续学习基准LIBERO系列7——计算并可视化点云

2024-01-17 06:44

本文主要是介绍机器人持续学习基准LIBERO系列7——计算并可视化点云,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.前置

  • 机器人持续学习基准LIBERO系列1——基本介绍与安装测试
  • 机器人持续学习基准LIBERO系列2——路径与基准基本信息
  • 机器人持续学习基准LIBERO系列3——相机画面可视化及单步移动更新
  • 机器人持续学习基准LIBERO系列4——robosuite最基本demo
  • 机器人持续学习基准LIBERO系列5——获取显示深度图
  • 机器人持续学习基准LIBERO系列6——获取并显示实际深度图

1.前置代码

  • 机器人持续学习基准LIBERO系列6——获取并显示实际深度图

2.重新获取真实深度信息

  • 之前的由于要显示,进行了整数化处理,所以重新获取一下原始真实深度信息
from robosuite.utils.camera_utils import get_real_depth_map
agentview_depth_real = get_real_depth_map(env.sim, agentview_depth)

3.获取图像尺寸

h,w = env_args['camera_heights'],  env_args['camera_widths']

4.创建像素点序列和颜色序列

i = np.zeros([h*w,2])#(点数,像素点二维坐标)
colors = np.zeros([h*w,3])#(点数,像素点对应的RGB值)
for x in range(h):for y in range(w):i[x*h+y] = [x,y]colors[x*h+y] = agentview_image[x,y]

5.获取相机内外参

  • robosuite官方文档有对应函数get_camera_intrinsic_matrix,get_camera_extrinsic_matrix
from robosuite.utils.camera_utils import get_camera_extrinsic_matrix,get_camera_intrinsic_matrixcamera_intrinsic_matrix_ = np.linalg.inv(get_camera_intrinsic_matrix(env.sim,'agentview', env_args['camera_heights'],  env_args['camera_widths']))
camera_extrinsic_matrix_ = np.linalg.inv(get_camera_extrinsic_matrix(env.sim,'agentview'))

6.计算世界坐标系下三维点坐标

  • 相机内外参使用参考公式
    在这里插入图片描述
points = np.zeros([i.shape[0],3])
for num,p in enumerate(i):p_ = (camera_intrinsic_matrix_@np.array([[p[0],p[1],1]]).T).Tp_[0,2] = agentview_depth_real[int(p[0]),int(p[1])]p_ = (camera_extrinsic_matrix_@np.array([p_[0,0],p_[0,1],p_[0,2],1]).T).Tpoints[num] = p_[:-1]
print(points)

7.关闭环境

env.close()
  • 不关闭环境,就是用open3d显示的话,会报错
X Error of failed request:  BadAccess (attempt to access private resource denied)Major opcode of failed request:  152 (GLX)Minor opcode of failed request:  5 (X_GLXMakeCurrent)Serial number of failed request:  183Current serial number in output stream:  183

8.open3d显示点云

import open3d as o3d
pcd_show = o3d.geometry.PointCloud()
pcd_show.points = o3d.utility.Vector3dVector(points[:, :3])
pcd_show.colors = o3d.utility.Vector3dVector(colors[:]/255)
o3d.visualization.draw_geometries([pcd_show])

在这里插入图片描述
在这里插入图片描述

这篇关于机器人持续学习基准LIBERO系列7——计算并可视化点云的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615156

相关文章

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

使用Folium在Python中进行地图可视化的操作指南

《使用Folium在Python中进行地图可视化的操作指南》在数据分析和可视化领域,地图可视化是一项非常重要的技能,它能够帮助我们更直观地理解和展示地理空间数据,Folium是一个基于Python的地... 目录引言一、Folium简介与安装1. Folium简介2. 安装Folium二、基础使用1. 创建

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx