Python爬虫---scrapy框架---当当网管道封装

2024-01-17 03:28

本文主要是介绍Python爬虫---scrapy框架---当当网管道封装,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目结构: 

dang.py文件:自己创建,实现爬虫核心功能的文件

import scrapy
from scrapy_dangdang_20240113.items import ScrapyDangdang20240113Itemclass DangSpider(scrapy.Spider):name = "dang"  # 名字# 如果是多页下载的话, 那么必须要调整的是allowed_domains的范围 一般情况下只写城名# allowed_domains = ["https://category.dangdang.com/cp01.01.00.00.00.00.html"]allowed_domains = ["category.dangdang.com"]start_urls = ["https://category.dangdang.com/cp01.01.00.00.00.00.html"]# 第1页:"https://category.dangdang.com/cp01.01.00.00.00.00.html"# 第2页: "https://category.dangdang.com/pg2-cp01.01.00.00.00.00.html"# 第3页: "https://category.dangdang.com/pg3-cp01.01.00.00.00.00.html"base_url = "https://category.dangdang.com/pg"page = 1def parse(self, response):print("========================================================================")# pipelines: 下载数据# items: 定义数据结构# xpath语法# src = //ul[@id='component_59']/li/a/img/@src# 除了第一张,其他做了懒加载 所以不能使用src,要使用这个data-original# src = //ul[@id='component_59']/li/a/img/@data-original# alt = //ul[@id='component_59']/li/a/img/@alt# price = //ul[@id='component_59']/li/p[@class='price']/span[1]/text()# 所有的seletor的对象都可以再次调用xpath语法li_list = response.xpath("//ul[@id='component_59']/li")for li in li_list:src = li.xpath(".//img/@data-original").extract_first()if src:src = srcelse:src = li.xpath(".//img/@src").extract_first()name = li.xpath(".//img/@alt").extract_first()price = li.xpath(".//p[@class='price']/span[1]/text()").extract_first()print(src, name, price)# 将爬取的数据放在对象里book = ScrapyDangdang20240113Item(src=src, name=name, price=price)# 获取一个book将book交给pipelines,将对象放在管道里yield book# 每一页的爬取业务的逻辑全都是一样的,所以我们只需要将执行的那个页的请求再次调用if self.page < 100:self.page = self.page + 1url = self.base_url + str(self.page) + "-cp01.01.00.00.00.00.html"# 调用parse万法# scrapy.Request就是scrpay的get请求 url就是请求地址# callback是你要执行的那个函数注意不需要加()yield scrapy.Request(url=url, callback=self.parse)

 items文件:定义数据结构的地方

import scrapyclass ScrapyDangdang20240113Item(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()# 通俗的说就是你要下载的数据都有什么src = scrapy.Field()name = scrapy.Field()price = scrapy.Field()

settings文件:配置文件,例如开启管道

# 开启管道
ITEM_PIPELINES = {# 管道可以有很多个,那么管道是有优先级的,优先级的范围是1到1000,值越小优先级越高"scrapy_dangdang_20240113.pipelines.ScrapyDangdang20240113Pipeline": 300,"scrapy_dangdang_20240113.pipelines.DangdangDownloadPipeline": 301,
}

 pipelines.py文件:管道文件,里面只有一个类,用于处理下载数据的,值越小优先级越高

# 下载数据# 如果想使用管道的话 那么就必须在settings中开启管道
class ScrapyDangdang20240113Pipeline:# item就是yield后面的book对象# 方式一:# 以下这种模式不推荐,因为每传递过来一个对象,那么就打开一次文件,对文件的作过于频繁# def process_item(self, item, spider):# (1)write万法必须要写一个字符串,而不能是其他的对象,使用str()强转# (2)w模式 会每一个对象都打开一次文件 覆盖之前的内容# with open("book.json","a",encoding="utf-8")as fp:#     fp.write(str(item))# return item# 方式二:# 在爬虫文件开始之前就执行的方法def open_spider(self, spider):print("++++++++++++++++++++++++++++++++++++++++++++++++++")self.fp = open("book.json", "w", encoding="utf-8")def process_item(self, item, spider):self.fp.write(str(item))return item# 在爬虫文件开始之后就执行的方法def close_spider(self, spider):print("----------------------------------------------------")self.fp.close()# 多条管道同时开启
# (1)定义管道类
# (2)在settings中开启管道
import urllib.request
class DangdangDownloadPipeline:def process_item(self, item, spider):# 下载图片url = "https:" + item.get("src")filename = "./books/" + item.get("name")[0:6] + ".jpg"urllib.request.urlretrieve(url=url, filename=filename)return item

这篇关于Python爬虫---scrapy框架---当当网管道封装的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/614753

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e