深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning

本文主要是介绍深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

偏理论,假设情况不易发生

摘要

多智能体强化学习的换道策略,不同的智能体在每一轮学习后交换策略,达到零和博弈。

和谐驾驶仅依赖于单个车辆有限的感知结果来平衡整体和个体效率,奖励机制结合个人效率和整体效率的和谐。

Ⅰ. 简介

自动驾驶不能过分要求速度性能,

考虑单个车辆的厌恶和所在路段的整体交通效率的奖励函数,适当的混合以提高整体的交通效率。

章节安排:

  1. 简介

  2. 和谐变道的深度强化学习模型

  3. 模拟器设计

  4. 实验设置和所提出的策略在训练和测试中的仿真结果

  5. 模型的一些有趣问题

  6. 总结

Ⅱ. 协调换道的深度强化学习模型

image-20240116222711519

A. 问题呈现和DRL模型
1)状态空间:

每个车辆的状态由:三个连续帧的交通快照和实际速度与预期速度之间的相应速度差组成。

拍摄交通快照来研究车辆周围的情况。

M t ( i ) M_t^{(i)} Mt(i)用二维矩阵表示车辆周围的占有网格(存在车辆的网格为1,空网格为0)

S被输入到DQN。

2)动作空间:

a t ( i ) a_t^{(i)} at(i)为车辆i的动作,包括改变到左/右道路和保持当前车道。

减速不在当前中,设置了单独的碰撞检查过程修改速度。

3)奖励函数:

r t ( i ) r_t^{(i)} rt(i)车辆行驶效率,与其他车辆的协调性和总体交通流率之间的权衡。

r v ( i ) r_v^{(i)} rv(i)是车辆个体形式效率的奖励, r c l ( i ) r_{cl}^{(i)} rcl(i)是变道的惩罚, r q r_q rq是交通流率的奖励。

α {\alpha} α是换道行为的协调系数。

频繁变道会使得交通流率下降,对于每个换道行为我们从奖励中减去 α {\alpha} α来作为惩罚。

α {\alpha} α使得车辆学习一个温和的变道策略,限制不必要的变道。

q t {q_t} qt是所研究车辆周围的流量

R s c a l e R_{scale} Rscale是一个缩放系数保持 r q r_q rq的幅度和 r v ( i ) r_v^{(i)} rv(i) r c l ( i ) r_{cl}^{(i)} rcl(i)的一致性。

B. 深度强化学习算法

DQN学习有效的变道决策机制,输入 s t ( i ) s_t^{(i)} st(i)到DQN,输出 a t ( i ) a_t^{(i)} at(i)

代理的经验存储在数据集 D t {D_t} Dt

在学习模型时,从Dt中均匀抽取样本以计算以下损失函数(TD误差),随机梯度下降更新参数

基于DQN Q值的贪婪策略选择并执行策略。

每个仿真车辆共享一个共同的RL模型作为上层决策者,并为自己维护一个低层运动控制器。

变道决策DQN

快照进入两层CNN,然后通过级联层与速度差级联。

将数据送入两层全连接Q网络,得到a作为高级驾驶策略

送到低级控制器,用于每个车辆的低级运动命令

更深层的深度强化学习没有获得更好的效果

Ⅲ. 仿真平台

平台流水线概括为以下:

  1. 根据上游流入率在道路起点生成新车辆。
  2. 从所提出的换道模型中获取环境数据并得到驾驶决策。
  3. 计算每辆车的适当速度,并执行驾驶决策。
    1. 在每次迭代中,纵向速度和横向速度,t将分别由车辆跟随模型和车道变换模型计算。
  4. 执行碰撞检查过程并更新所有车辆的位置。
    1. 在步骤4)中将执行碰撞检查过程,以修改纵向速度以确保安全。

问题

多智能体每轮学习后交换策略。

个人效率和整体效率的和谐。

这篇关于深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/614353

相关文章

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Redis中6种缓存更新策略详解

《Redis中6种缓存更新策略详解》Redis作为一款高性能的内存数据库,已经成为缓存层的首选解决方案,然而,使用缓存时最大的挑战在于保证缓存数据与底层数据源的一致性,本文将介绍Redis中6种缓存更... 目录引言策略一:Cache-Aside(旁路缓存)策略工作原理代码示例优缺点分析适用场景策略二:Re