深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning

本文主要是介绍深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

偏理论,假设情况不易发生

摘要

多智能体强化学习的换道策略,不同的智能体在每一轮学习后交换策略,达到零和博弈。

和谐驾驶仅依赖于单个车辆有限的感知结果来平衡整体和个体效率,奖励机制结合个人效率和整体效率的和谐。

Ⅰ. 简介

自动驾驶不能过分要求速度性能,

考虑单个车辆的厌恶和所在路段的整体交通效率的奖励函数,适当的混合以提高整体的交通效率。

章节安排:

  1. 简介

  2. 和谐变道的深度强化学习模型

  3. 模拟器设计

  4. 实验设置和所提出的策略在训练和测试中的仿真结果

  5. 模型的一些有趣问题

  6. 总结

Ⅱ. 协调换道的深度强化学习模型

image-20240116222711519

A. 问题呈现和DRL模型
1)状态空间:

每个车辆的状态由:三个连续帧的交通快照和实际速度与预期速度之间的相应速度差组成。

拍摄交通快照来研究车辆周围的情况。

M t ( i ) M_t^{(i)} Mt(i)用二维矩阵表示车辆周围的占有网格(存在车辆的网格为1,空网格为0)

S被输入到DQN。

2)动作空间:

a t ( i ) a_t^{(i)} at(i)为车辆i的动作,包括改变到左/右道路和保持当前车道。

减速不在当前中,设置了单独的碰撞检查过程修改速度。

3)奖励函数:

r t ( i ) r_t^{(i)} rt(i)车辆行驶效率,与其他车辆的协调性和总体交通流率之间的权衡。

r v ( i ) r_v^{(i)} rv(i)是车辆个体形式效率的奖励, r c l ( i ) r_{cl}^{(i)} rcl(i)是变道的惩罚, r q r_q rq是交通流率的奖励。

α {\alpha} α是换道行为的协调系数。

频繁变道会使得交通流率下降,对于每个换道行为我们从奖励中减去 α {\alpha} α来作为惩罚。

α {\alpha} α使得车辆学习一个温和的变道策略,限制不必要的变道。

q t {q_t} qt是所研究车辆周围的流量

R s c a l e R_{scale} Rscale是一个缩放系数保持 r q r_q rq的幅度和 r v ( i ) r_v^{(i)} rv(i) r c l ( i ) r_{cl}^{(i)} rcl(i)的一致性。

B. 深度强化学习算法

DQN学习有效的变道决策机制,输入 s t ( i ) s_t^{(i)} st(i)到DQN,输出 a t ( i ) a_t^{(i)} at(i)

代理的经验存储在数据集 D t {D_t} Dt

在学习模型时,从Dt中均匀抽取样本以计算以下损失函数(TD误差),随机梯度下降更新参数

基于DQN Q值的贪婪策略选择并执行策略。

每个仿真车辆共享一个共同的RL模型作为上层决策者,并为自己维护一个低层运动控制器。

变道决策DQN

快照进入两层CNN,然后通过级联层与速度差级联。

将数据送入两层全连接Q网络,得到a作为高级驾驶策略

送到低级控制器,用于每个车辆的低级运动命令

更深层的深度强化学习没有获得更好的效果

Ⅲ. 仿真平台

平台流水线概括为以下:

  1. 根据上游流入率在道路起点生成新车辆。
  2. 从所提出的换道模型中获取环境数据并得到驾驶决策。
  3. 计算每辆车的适当速度,并执行驾驶决策。
    1. 在每次迭代中,纵向速度和横向速度,t将分别由车辆跟随模型和车道变换模型计算。
  4. 执行碰撞检查过程并更新所有车辆的位置。
    1. 在步骤4)中将执行碰撞检查过程,以修改纵向速度以确保安全。

问题

多智能体每轮学习后交换策略。

个人效率和整体效率的和谐。

这篇关于深度强化学习的变道策略:Harmonious Lane Changing via Deep Reinforcement Learning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/614353

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir