Simon算法详解

2024-01-16 14:20
文章标签 算法 详解 simon

本文主要是介绍Simon算法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0.0 Intro

相关的算法:
Deutsh-Jozsa算法:
    第一个量子算法对经典算法取得指数级加速的算法
    美中不足在于只能确定函数是平衡的还是非平衡的,无法确定函数具体的内容,即无法直接解出函数
Bernstein-Vazirani算法:
    在Deutsh-Jozsa算法基础上进一步提出,能够直接解出算法本身
    同样存在问题,即没有实现指数级的加速

Simon算法 在上述两个算法的基础上更进一步,体现在两个方面
一方面,Simon算法可以在Simon问题中,直接解出目标函数
另一方面,Simon问题的经典解法是指数级复杂度,而Simon算法相较经典算法也是取得了指数级的加速。

1.1 Simon问题(Simon’s Problem)

现有一未知数,其作用域和值域都是n位的二进制数据: f : { 0 , 1 } n → { 0 , 1 } n f:\left \{ 0,1\right \}^{n} \to \left \{ 0,1\right \}^{n} f:{0,1}n{0,1}n
该函数是单射或对称函数中的一种。当函数为对称时,有: x 1 + x 2 = s , f ( x 1 ) = f ( x 2 ) x_{1}+ x_{2}=s,f(x_{1})=f(x_{2}) x1+x2=sf(x1)=f(x2)现需确定函数的属性,若属于对称函数需进一步确定 s

小贴士:

  • 单射函数即作用域上每一个输入都有唯一输出的函数,常见的有实数域上所有的线性函数,例如f(x)=x、f(x)=lnx等都是单射函数
  • 对称函数的性质在上面已经说明,其中s其实是x1和x2的对称轴,常见的对称函数即二次函数,例如f(x)=x^2,其对称轴s=0

1.2 Simon问题分析与经典解法的思路

1.2.1 Simon问题分析

需要注意的是,Simon问题中提到的值域和作用域始终都是n位二进制数,进行的加法严格意义上说是模二加法, 在模二加法中两个二进制数相加为0即表示这两个二进制数是相等的,因此可对Simon问题进行如下简化:

  • 对于单射函数,显然有:在x1=x2时, x 1 + x 2 = 0 , f ( x 1 ) = f ( x 2 ) x_{1}+ x_{2}=0,f(x_{1})=f(x_{2}) x1+x2=0f(x1)=f(x2)因此,s=0即为在单射函数情况下的解
  • 对于对称函数,除了s=0这一个解之外,显然还有另一个非平凡解,即为对称函数对称轴的位置

小贴士

  • 平凡解就是显而易见的解、没有讨论的必要但是为了结果的完整性仍需要考虑的结果,比如Ax=0中的零解,即x=0,即为平凡解
  • 非平凡解(nontrivial solution)是齐次方程或齐次方程组的非零解。

1.2.2 Simon问题的经典解法(暴力解法)

可以通过将作用域取值不断带入进行验证的方法进行求解,考虑到单射函数与对称函数的区别,不必将整个作用域带入,只需要带入作用域的一半+1次即可完成验证。
作用域是n位二进制数,因此需要进行验证的次数为: 2 n − 1 + 1 2^{n-1}+1 2n1+1
这里解释一下验证一半作用域后额外再验证一次的原因。最坏的情况下,验证一半作用域后会发现每一个输出都是唯一的,那么就需要额外再进行一次,将额外的一次结果与前面一半作用域产生的值进行比对:

  • 如果仍然是新的唯一输出,则表明这是一个单射函数;
  • 如果能与之前某个输出值匹配,则表明这是一个对称函数,该输出对应的输入值和这额外的一次输入值就可以确定对称轴的位置。

因而,Simon问题经典解法的时间复杂度是 O ( 2 n ) O(2^n) O(2n)

2.1 Simon算法详解

2024.1.15 待续…

这篇关于Simon算法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/612873

相关文章

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

MySQL 表的内外连接案例详解

《MySQL表的内外连接案例详解》本文给大家介绍MySQL表的内外连接,结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录表的内外连接(重点)内连接外连接表的内外连接(重点)内连接内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压

RabbitMQ工作模式中的RPC通信模式详解

《RabbitMQ工作模式中的RPC通信模式详解》在RabbitMQ中,RPC模式通过消息队列实现远程调用功能,这篇文章给大家介绍RabbitMQ工作模式之RPC通信模式,感兴趣的朋友一起看看吧... 目录RPC通信模式概述工作流程代码案例引入依赖常量类编写客户端代码编写服务端代码RPC通信模式概述在R

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Linux基础命令@grep、wc、管道符的使用详解

《Linux基础命令@grep、wc、管道符的使用详解》:本文主要介绍Linux基础命令@grep、wc、管道符的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录grep概念语法作用演示一演示二演示三,带选项 -nwc概念语法作用wc,不带选项-c,统计字节数-

SpringCloud中的@FeignClient注解使用详解

《SpringCloud中的@FeignClient注解使用详解》在SpringCloud中使用Feign进行服务间的调用时,通常会使用@FeignClient注解来标记Feign客户端接口,这篇文章... 在Spring Cloud中使用Feign进行服务间的调用时,通常会使用@FeignClient注解

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

maven中的maven-antrun-plugin插件示例详解

《maven中的maven-antrun-plugin插件示例详解》maven-antrun-plugin是Maven生态中一个强大的工具,尤其适合需要复用Ant脚本或实现复杂构建逻辑的场景... 目录1. 核心功能2. 典型使用场景3. 配置示例4. 关键配置项5. 优缺点分析6. 最佳实践7. 常见问题

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2