R语言【paleobioDB】——pbdb_orig_ext():绘制随着时间变化而出现的新类群

2024-01-16 07:28

本文主要是介绍R语言【paleobioDB】——pbdb_orig_ext():绘制随着时间变化而出现的新类群,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Package paleobioDB version 0.7.0

paleobioDB 包在2020年已经停止更新,该包依赖PBDB v1 API。

可以选择在Index of /src/contrib/Archive/paleobioDB (r-project.org)下载安装包后,执行本地安装。


Usage

pbdb_orig_ext (data, rank, 
temporal_extent, res, orig_ext,  
colour="#0000FF30", bord="#0000FF", do.plot=TRUE)

Arguments

参数【data】:输入的数据,数据帧格式。可以通过 pbdb_occurrences() 函数 传参 show = c("phylo", "ident") 获得数据。

参数【rank】:设置感兴趣的分类阶元。可选项包括:“species”,“genus”,“family”,“order”,“class” 和 “phylum”。默认值为 “species”

参数【temporal_extent】:设置时间范围,向量型(min,max)。

参数【res】:数值型。设置时间范围的时间段刻度。

参数【orig_ext】1 表示出现,2 表示灭绝。

参数【colour】:改变图中柱子的颜色。默认为 skyblue2

参数【bord】:设置图形边界的颜色。

参数【do.plot】TRUE/FALSE。默认为 TRUE


Value

返回一个数据帧,在选定的时间范围内,展示目标分类阶元的第一次出现次数和灭绝次数。并且绘制图形。


Example

library(paleobioDB)
library(RCurl)options(RCurlOptions = list(cainfo = system.file("CurlSSL", "cacert.pem", package = "RCurl")))canidae<-  pbdb_occurrences (limit="all", vocab="pbdb",
+                              base_name="Canidae", show=c("phylo", "ident"))

> pbdb_orig_ext (canidae, rank="genus", temporal_extent=c(0, 10), 
+                res=1, orig_ext=1) new ext
1-2 to 0-1    2   2
2-3 to 1-2    0   0
3-4 to 2-3    3   2
4-5 to 3-4    8   6
5-6 to 4-5    3   4
6-7 to 5-6    5   0
7-8 to 6-7    0   0
8-9 to 7-8    0   0
9-10 to 8-9   0   0

> pbdb_orig_ext (canidae, rank="species", temporal_extent=c(0, 10), 
+                res=1, orig_ext=2) new ext
1-2 to 0-1    7  14
2-3 to 1-2   10  14
3-4 to 2-3   39  13
4-5 to 3-4   24  16
5-6 to 4-5   14   9
6-7 to 5-6   21   0
7-8 to 6-7    0   0
8-9 to 7-8    1   0
9-10 to 8-9   2   0


Page

function (data, rank, temporal_extent, res, orig_ext = 1, colour = "#0000FF30", bord = "#0000FF", do.plot = TRUE) 
{temporal_range <- pbdb_temp_range(data = data, rank = rank, do.plot = FALSE)te <- temporal_extentsequence <- seq(from = min(te), to = (max(te)), by = res)intv <- data.frame(min = sequence[1:length(sequence) - 1], max = sequence[2:length(sequence)])labels1 <- paste(intv[, 1], intv[, 2], sep = "-")labels2 <- paste(labels1[2:(length(labels1))], labels1[1:(length(labels1) - 1)], sep = " to ")res_sp <- list()for (i in 1:dim(intv)[1]) {intvv <- intv[i, ]cases1 <- which(as.numeric(temporal_range$min) >= intvv$min & as.numeric(temporal_range$min) <= intvv$max & as.numeric(temporal_range$max) >= intvv$max)cases2 <- which(as.numeric(temporal_range$min) <= intvv$min & as.numeric(temporal_range$max) <= intvv$max & as.numeric(temporal_range$max) >= intvv$min)cases3 <- which(as.numeric(temporal_range$min) <= intvv$min & as.numeric(temporal_range$max) >= intvv$max)cases <- unique(c(cases1, cases2, cases3))sps <- temporal_range[cases, ]res_sp[[i]] <- sps}change <- data.frame()for (i in length(res_sp):2) {new_taxa <- length(setdiff(row.names(res_sp[[i - 1]]), row.names(res_sp[[i]])))ext <- length(setdiff(row.names(res_sp[[i]]), row.names(res_sp[[i - 1]])))col <- c(new_taxa, ext)change <- rbind(change, col)}names(change) <- c("new", "ext")change <- change[rev(as.numeric(row.names(change))), ]row.names(change) <- labels2if (do.plot == TRUE) {ymx <- max(change[, orig_ext])ymn <- min(change[, orig_ext])xmx <- sequence[length(sequence) - 1]xmn <- sequence[2]plot.new()par(mar = c(5, 5, 2, 5), font.lab = 1, col.lab = "grey20", col.axis = "grey50", cex.axis = 0.8)plot.window(xlim = c(xmx, xmn), xaxs = "i", ylim = c(ymn, ymx), yaxs = "i")abline(v = seq(xmn, xmx, by = res), col = "grey90", lwd = 1)abline(h = seq(0, ymx, by = (ymx/10)), col = "grey90", lwd = 1)xx <- c(xmn, sequence[2:(length(sequence) - 1)], xmx)yy <- c(0, change[, orig_ext], 0)polygon(xx, yy, col = colour, border = bord)axis(1, line = 1, labels = labels2, at = xx[-c(1, length(xx))])axis(2, line = 1, las = 1)mtext("Million years before present", line = 3, adj = 1, side = 1)mtext(paste("Number of ", rank, sep = ""), line = 3, adj = 0, side = 2)title(ifelse(orig_ext == 1, "First appearences", "Last appearences"))}return(change)
}

这篇关于R语言【paleobioDB】——pbdb_orig_ext():绘制随着时间变化而出现的新类群的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611738

相关文章

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

C语言中位操作的实际应用举例

《C语言中位操作的实际应用举例》:本文主要介绍C语言中位操作的实际应用,总结了位操作的使用场景,并指出了需要注意的问题,如可读性、平台依赖性和溢出风险,文中通过代码介绍的非常详细,需要的朋友可以参... 目录1. 嵌入式系统与硬件寄存器操作2. 网络协议解析3. 图像处理与颜色编码4. 高效处理布尔标志集合

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带