R语言【paleobioDB】——pbdb_orig_ext():绘制随着时间变化而出现的新类群

2024-01-16 07:28

本文主要是介绍R语言【paleobioDB】——pbdb_orig_ext():绘制随着时间变化而出现的新类群,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Package paleobioDB version 0.7.0

paleobioDB 包在2020年已经停止更新,该包依赖PBDB v1 API。

可以选择在Index of /src/contrib/Archive/paleobioDB (r-project.org)下载安装包后,执行本地安装。


Usage

pbdb_orig_ext (data, rank, 
temporal_extent, res, orig_ext,  
colour="#0000FF30", bord="#0000FF", do.plot=TRUE)

Arguments

参数【data】:输入的数据,数据帧格式。可以通过 pbdb_occurrences() 函数 传参 show = c("phylo", "ident") 获得数据。

参数【rank】:设置感兴趣的分类阶元。可选项包括:“species”,“genus”,“family”,“order”,“class” 和 “phylum”。默认值为 “species”

参数【temporal_extent】:设置时间范围,向量型(min,max)。

参数【res】:数值型。设置时间范围的时间段刻度。

参数【orig_ext】1 表示出现,2 表示灭绝。

参数【colour】:改变图中柱子的颜色。默认为 skyblue2

参数【bord】:设置图形边界的颜色。

参数【do.plot】TRUE/FALSE。默认为 TRUE


Value

返回一个数据帧,在选定的时间范围内,展示目标分类阶元的第一次出现次数和灭绝次数。并且绘制图形。


Example

library(paleobioDB)
library(RCurl)options(RCurlOptions = list(cainfo = system.file("CurlSSL", "cacert.pem", package = "RCurl")))canidae<-  pbdb_occurrences (limit="all", vocab="pbdb",
+                              base_name="Canidae", show=c("phylo", "ident"))

> pbdb_orig_ext (canidae, rank="genus", temporal_extent=c(0, 10), 
+                res=1, orig_ext=1) new ext
1-2 to 0-1    2   2
2-3 to 1-2    0   0
3-4 to 2-3    3   2
4-5 to 3-4    8   6
5-6 to 4-5    3   4
6-7 to 5-6    5   0
7-8 to 6-7    0   0
8-9 to 7-8    0   0
9-10 to 8-9   0   0

> pbdb_orig_ext (canidae, rank="species", temporal_extent=c(0, 10), 
+                res=1, orig_ext=2) new ext
1-2 to 0-1    7  14
2-3 to 1-2   10  14
3-4 to 2-3   39  13
4-5 to 3-4   24  16
5-6 to 4-5   14   9
6-7 to 5-6   21   0
7-8 to 6-7    0   0
8-9 to 7-8    1   0
9-10 to 8-9   2   0


Page

function (data, rank, temporal_extent, res, orig_ext = 1, colour = "#0000FF30", bord = "#0000FF", do.plot = TRUE) 
{temporal_range <- pbdb_temp_range(data = data, rank = rank, do.plot = FALSE)te <- temporal_extentsequence <- seq(from = min(te), to = (max(te)), by = res)intv <- data.frame(min = sequence[1:length(sequence) - 1], max = sequence[2:length(sequence)])labels1 <- paste(intv[, 1], intv[, 2], sep = "-")labels2 <- paste(labels1[2:(length(labels1))], labels1[1:(length(labels1) - 1)], sep = " to ")res_sp <- list()for (i in 1:dim(intv)[1]) {intvv <- intv[i, ]cases1 <- which(as.numeric(temporal_range$min) >= intvv$min & as.numeric(temporal_range$min) <= intvv$max & as.numeric(temporal_range$max) >= intvv$max)cases2 <- which(as.numeric(temporal_range$min) <= intvv$min & as.numeric(temporal_range$max) <= intvv$max & as.numeric(temporal_range$max) >= intvv$min)cases3 <- which(as.numeric(temporal_range$min) <= intvv$min & as.numeric(temporal_range$max) >= intvv$max)cases <- unique(c(cases1, cases2, cases3))sps <- temporal_range[cases, ]res_sp[[i]] <- sps}change <- data.frame()for (i in length(res_sp):2) {new_taxa <- length(setdiff(row.names(res_sp[[i - 1]]), row.names(res_sp[[i]])))ext <- length(setdiff(row.names(res_sp[[i]]), row.names(res_sp[[i - 1]])))col <- c(new_taxa, ext)change <- rbind(change, col)}names(change) <- c("new", "ext")change <- change[rev(as.numeric(row.names(change))), ]row.names(change) <- labels2if (do.plot == TRUE) {ymx <- max(change[, orig_ext])ymn <- min(change[, orig_ext])xmx <- sequence[length(sequence) - 1]xmn <- sequence[2]plot.new()par(mar = c(5, 5, 2, 5), font.lab = 1, col.lab = "grey20", col.axis = "grey50", cex.axis = 0.8)plot.window(xlim = c(xmx, xmn), xaxs = "i", ylim = c(ymn, ymx), yaxs = "i")abline(v = seq(xmn, xmx, by = res), col = "grey90", lwd = 1)abline(h = seq(0, ymx, by = (ymx/10)), col = "grey90", lwd = 1)xx <- c(xmn, sequence[2:(length(sequence) - 1)], xmx)yy <- c(0, change[, orig_ext], 0)polygon(xx, yy, col = colour, border = bord)axis(1, line = 1, labels = labels2, at = xx[-c(1, length(xx))])axis(2, line = 1, las = 1)mtext("Million years before present", line = 3, adj = 1, side = 1)mtext(paste("Number of ", rank, sep = ""), line = 3, adj = 0, side = 2)title(ifelse(orig_ext == 1, "First appearences", "Last appearences"))}return(change)
}

这篇关于R语言【paleobioDB】——pbdb_orig_ext():绘制随着时间变化而出现的新类群的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611738

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步

python语言中的常用容器(集合)示例详解

《python语言中的常用容器(集合)示例详解》Python集合是一种无序且不重复的数据容器,它可以存储任意类型的对象,包括数字、字符串、元组等,下面:本文主要介绍python语言中常用容器(集合... 目录1.核心内置容器1. 列表2. 元组3. 集合4. 冻结集合5. 字典2.collections模块

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则