LU分解(C++)

2024-01-16 06:44
文章标签 c++ 分解 lu

本文主要是介绍LU分解(C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LU分解是一种重要的数值线性代数技术, 用于解决线性方程组和矩阵求逆等问题. 在科学工程领域, 经常需要解决形如 A x = b Ax = b Ax=b的线性方程组, 其中 A A A是系数矩阵, x x x是未知向量, b b b是已知向量. LU分解是一种将系数矩阵 A A A分解为一个下三角矩阵 L L L和一个上三角矩阵 U U U的方法, 即 A = L U A = LU A=LU. 这个分解有许多优点, 其中之一是它可以帮助我们更有效地解决多个不同的右端向量 b b b对应的线性方程组, 而无需每次都重新分解 A A A. 此外, LU分解也有助于计算矩阵的逆, 因为一旦我们得到了 A = L U A = LU A=LU的分解, 就可以相对容易地计算出 A A A的逆. 因此, LU分解是许多数值计算和线性代数问题的基础.

LU分解在数值计算中具有广泛的应用, 包括但不限于以下几个方面:

  1. 线性方程组求解 LU分解可用于有效解决多个不同右端向量的线性方程组, 减少了重复分解系数矩阵的计算开销.
  2. 矩阵求逆 一旦得到 A = L U A=LU A=LU的分解, 可以相对容易地计算矩阵 A A A的逆矩阵. 这在各种科学计算和工程应用中非常有用.
  3. 数值稳定性 LU分解可以帮助分析和改善数值算法的稳定性, 以减小舍入误差的影响.
  4. 最小二乘法 LU分解可用于最小二乘拟合等问题, 其中需要求解超定或欠定线性方程组.

本文仅考虑不选主元素的三角分解方法, 即 A A A的顺序主子式都不等于0, 否则需要对矩阵 A A A左乘一个排列矩阵 P P P.

算法描述

LU分解的数学原理基于Gauss消元法. 它的核心思想是将系数矩阵 A A A通过一系列行变换变成一个上三角矩阵 U U U, 同时记录下每次行变换的过程, 以构造下三角矩阵 L L L.

A A A是一个 n × n n \times n n×n的矩阵, LU分解的目标是找到下三角矩阵 L L L和上三角矩阵 U U U, 使得 A = L U A = LU A=LU. 具体步骤包括:

  1. L L L初始化为单位下三角矩阵, 将 U U U初始化为 A A A的副本.
  2. 针对第一列, 使用行变换操作将 U U U的第一列元素变成零, 同时记录行变换操作到 L L L的第一列.
  3. 重复上述步骤, 依次处理第二列, 第三列, 直到处理完最后一列, 得到完整的LU分解.

数学上, 行变换操作是通过矩阵乘法来表示的, 这些操作将 A A A的行变换为 U U U的行, 同时更新 L L L. 最终, 得到的矩阵 U U U就是原矩阵 A A A的上三角部分, 而矩阵 L L L则包含了所有行变换的信息.

实际上, 如果每次都进行消元, 可能导致不稳定的情形出现, 且效率较低. 我们可以直接从LU分解的结论 A = L U A=LU A=LU出发, 利用矩阵乘法的定义, 我们可以得到 n 2 n^2 n2个方程, 通过化简计算, 可得如下快速计算LU分解的算法:

A = ( a i j ) , L = ( l i j ) , U = ( u i j ) A=(a_{ij}),L=(l_{ij}),U=(u_{ij}) A=(aij),L=(lij),U=(uij), 首先由 A A A的第1行第1列可以计算出 U U U的第1行和 L L L的第1列:

u 1 j = a 1 j , j = 1 , 2 , ⋯ , n u_{1j}=a_{1j},j=1,2,\cdots,n u1j=a1j,j=1,2,,n

l k 1 = a k 1 u 11 , k = 2 , 3 , ⋯ , n l_{k1}=\frac{a_{k1}}{u_{11}},k=2,3,\cdots,n lk1=u11ak1,k=2,3,,n

下面假设 U U U 1 1 1 k − 1 k-1 k1行, L L L 1 1 1 k − 1 k-1 k1列均已算出, 则有:

u k j = a k j − ∑ r = 1 k − 1 l k r u r j , j = k , k + 1 , ⋯ , n u_{kj}=a_{kj}-\sum_{r=1}^{k-1}l_{kr}u_{rj},j=k,k+1,\cdots,n ukj=akjr=1k1lkrurj,j=k,k+1,,n

l i k = 1 u k k ( a i k − ∑ r = 1 k − 1 l i r u r k ) , i = k , k + 1 , ⋯ , n l_{ik}=\frac1{u_{kk}}\left(a_{ik}-\sum_{r=1}^{k-1}l_{ir}u_{rk}\right),i=k,k+1,\cdots,n lik=ukk1(aikr=1k1lirurk),i=k,k+1,,n

根据如上递推公式即可算出 L L L U U U的全部元素.

算法实现

#include <armadillo>
using namespace arma;
/** LU分解* L:下三角矩阵* U:上三角矩阵* A:待分解矩阵* e:精度** 返回(bool):*  true : 分解失败*  false: 分解成功*/
bool LU(mat &L, mat &U, const mat &A, const double &e = 1e-6)
{if (A.n_cols == 1){L.ones(1, 1);U.resize(1, 1);if (abs(U.at(0, 0) = A.at(0, 0)) < e)return true;return false;}L.eye(A.n_cols, A.n_cols);U.zeros(A.n_cols, A.n_cols);unsigned n(A.n_cols - 1);for (unsigned i(0); i != n; ++i){U.at(i, i) = A.at(i, i);for (unsigned k(0); k != i; ++k)U.at(i, i) -= L.at(i, k) * U.at(k, i);if (abs(U.at(i, i)) < e)return true;for (unsigned j(i + 1); j != A.n_cols; ++j){L.at(j, i) = A.at(j, i);U.at(i, j) = A.at(i, j);for (unsigned k(0); k != i; ++k){U.at(i, j) -= L.at(i, k) * U.at(k, j);L.at(j, i) -= L.at(j, k) * U.at(k, i);}L.at(j, i) /= U.at(i, i);}}U.at(n, n) = A.at(n, n);for (unsigned i(0); i != n; ++i)U.at(n, n) -= L.at(n, i) * U.at(i, n);if (abs(U.at(n, n)) < e)return true;return false;
}

实际上armadillo库提供了lu函数, 也可以直接使用arma::lu.

实例分析

对以下矩阵进行LU分解:

A = ( 6 2 1 − 1 2 4 1 0 1 1 4 − 1 − 1 0 − 1 3 ) A=\begin{pmatrix} 6&2&1&-1\\2&4&1&0\\1&1&4&-1\\-1&0&-1&3 \end{pmatrix} A= 6211241011411013

代入程序求得

L = ( 1.0000 0 0 0 0.3333 1.0000 0 0 0.1667 0.2000 1.0000 0 − 0.1667 0.1000 − 0.2432 1.0000 ) L=\begin{pmatrix} 1.0000&0&0&0\\ 0.3333&1.0000&0&0\\ 0.1667&0.2000&1.0000&0\\ -0.1667&0.1000&-0.2432&1.0000 \end{pmatrix} L= 1.00000.33330.16670.166701.00000.20000.1000001.00000.24320001.0000

U = ( 6.0000 2.0000 1.0000 − 1.0000 0 3.3333 0.6667 0.3333 0 0 3.7000 − 0.9000 0 0 0 2.5811 ) U=\begin{pmatrix} 6.0000&2.0000&1.0000&-1.0000\\ 0&3.3333&0.6667&0.3333\\ 0&0&3.7000&-0.9000\\ 0&0&0&2.5811 \end{pmatrix} U= 6.00000002.00003.3333001.00000.66673.700001.00000.33330.90002.5811

这篇关于LU分解(C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611637

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么