AIGC笔记--VQVAE模型搭建

2024-01-16 06:12
文章标签 笔记 模型 搭建 aigc vqvae

本文主要是介绍AIGC笔记--VQVAE模型搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1--VQVAE模型

        VAE 模型生成的内容质量不高,原因可能在于将图片编码成连续变量(映射为标准分布),然而将图片编码成离散变量可能会更好(因为现实生活中习惯用离散变量来形容事物,例如人的高矮胖瘦等都是离散的;)

        VQVAE模型的三个关键模块:EncoderDecoderCodebook

        Encoder 将输入编码成特征向量,计算特征向量与 Codebook 中 Embedding 向量的相似性(L2距离),取最相似的 Embedding 向量作为特征向量的替代,并输入到 Decoder 中进行重构输入;

        VQVAE的损失函数包括源图片和重构图片的重构损失,以及 Codebook 中量化过程的量化损失 vq_loss;

        VQ-VAE详细介绍参考:轻松理解 VQ-VAE

2--简单代码实例

import torch
import torch.nn as nn
import torch.nn.functional as Fclass VectorQuantizer(nn.Module):def __init__(self, num_embeddings, embedding_dim, commitment_cost):super(VectorQuantizer, self).__init__()self._embedding_dim = embedding_dimself._num_embeddings = num_embeddingsself._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim)self._embedding.weight.data.uniform_(-1/self._num_embeddings, 1/self._num_embeddings)self._commitment_cost = commitment_costdef forward(self, inputs):# convert inputs from BCHW -> BHWCinputs = inputs.permute(0, 2, 3, 1).contiguous()input_shape = inputs.shape# Flatten inputflat_input = inputs.view(-1, self._embedding_dim)# Calculate distancesdistances = (torch.sum(flat_input**2, dim=1, keepdim=True) + torch.sum(self._embedding.weight**2, dim=1)- 2 * torch.matmul(flat_input, self._embedding.weight.t()))# Encodingencoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)encodings = torch.zeros(encoding_indices.shape[0], self._num_embeddings, device=inputs.device)encodings.scatter_(1, encoding_indices, 1)# Quantize and unflattenquantized = torch.matmul(encodings, self._embedding.weight).view(input_shape)# Losse_latent_loss = F.mse_loss(quantized.detach(), inputs)  # 论文中损失函数的第三项q_latent_loss = F.mse_loss(quantized, inputs.detach()) # 论文中损失函数的第二项loss = q_latent_loss + self._commitment_cost * e_latent_lossquantized = inputs + (quantized - inputs).detach() # 梯度复制avg_probs = torch.mean(encodings, dim=0)perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))# convert quantized from BHWC -> BCHWreturn loss, quantized.permute(0, 3, 1, 2).contiguous(), perplexity, encodingsclass VectorQuantizerEMA(nn.Module):def __init__(self, num_embeddings, embedding_dim, commitment_cost, decay, epsilon=1e-5):super(VectorQuantizerEMA, self).__init__()self._embedding_dim = embedding_dimself._num_embeddings = num_embeddingsself._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim)self._embedding.weight.data.normal_()self._commitment_cost = commitment_costself.register_buffer('_ema_cluster_size', torch.zeros(num_embeddings))self._ema_w = nn.Parameter(torch.Tensor(num_embeddings, self._embedding_dim))self._ema_w.data.normal_()self._decay = decayself._epsilon = epsilondef forward(self, inputs):# convert inputs from BCHW -> BHWCinputs = inputs.permute(0, 2, 3, 1).contiguous()input_shape = inputs.shape # B(256) H(8) W(8) C(64)# Flatten input BHWC -> BHW, Cflat_input = inputs.view(-1, self._embedding_dim)# Calculate distances 计算与embedding space中所有embedding的距离distances = (torch.sum(flat_input**2, dim=1, keepdim=True) + torch.sum(self._embedding.weight**2, dim=1)- 2 * torch.matmul(flat_input, self._embedding.weight.t()))# Encodingencoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) # 取最相似的embeddingencodings = torch.zeros(encoding_indices.shape[0], self._num_embeddings, device=inputs.device)encodings.scatter_(1, encoding_indices, 1) # 映射为 one-hot vector# Quantize and unflattenquantized = torch.matmul(encodings, self._embedding.weight).view(input_shape) # 根据index使用embedding space对应的embedding# Use EMA to update the embedding vectorsif self.training:self._ema_cluster_size = self._ema_cluster_size * self._decay + \(1 - self._decay) * torch.sum(encodings, 0)# Laplace smoothing of the cluster sizen = torch.sum(self._ema_cluster_size.data)self._ema_cluster_size = ((self._ema_cluster_size + self._epsilon)/ (n + self._num_embeddings * self._epsilon) * n) dw = torch.matmul(encodings.t(), flat_input)self._ema_w = nn.Parameter(self._ema_w * self._decay + (1 - self._decay) * dw) self._embedding.weight = nn.Parameter(self._ema_w / self._ema_cluster_size.unsqueeze(1)) # 论文中公式(8)# Losse_latent_loss = F.mse_loss(quantized.detach(), inputs) # 计算encoder输出(即inputs)和decoder输入(即quantized)之间的损失loss = self._commitment_cost * e_latent_loss# Straight Through Estimatorquantized = inputs + (quantized - inputs).detach() # trick, 将decoder的输入对应的梯度复制,作为encoder的输出对应的梯度avg_probs = torch.mean(encodings, dim=0)perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))# convert quantized from BHWC -> BCHWreturn loss, quantized.permute(0, 3, 1, 2).contiguous(), perplexity, encodingsclass Residual(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_hiddens):super(Residual, self).__init__()self._block = nn.Sequential(nn.ReLU(True),nn.Conv2d(in_channels = in_channels,out_channels = num_residual_hiddens,kernel_size = 3, stride = 1, padding = 1, bias = False),nn.ReLU(True),nn.Conv2d(in_channels = num_residual_hiddens,out_channels = num_hiddens,kernel_size = 1, stride = 1, bias = False))def forward(self, x):return x + self._block(x)class ResidualStack(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):super(ResidualStack, self).__init__()self._num_residual_layers = num_residual_layersself._layers = nn.ModuleList([Residual(in_channels, num_hiddens, num_residual_hiddens)for _ in range(self._num_residual_layers)])def forward(self, x):for i in range(self._num_residual_layers):x = self._layers[i](x)return F.relu(x)class Encoder(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):super(Encoder, self).__init__()self._conv_1 = nn.Conv2d(in_channels = in_channels,out_channels = num_hiddens//2,kernel_size = 4,stride = 2, padding = 1)self._conv_2 = nn.Conv2d(in_channels = num_hiddens//2,out_channels = num_hiddens,kernel_size = 4,stride = 2, padding = 1)self._conv_3 = nn.Conv2d(in_channels = num_hiddens,out_channels = num_hiddens,kernel_size = 3,stride = 1, padding = 1)self._residual_stack = ResidualStack(in_channels = num_hiddens,num_hiddens = num_hiddens,num_residual_layers = num_residual_layers,num_residual_hiddens = num_residual_hiddens)def forward(self, inputs):x = self._conv_1(inputs)x = F.relu(x)x = self._conv_2(x)x = F.relu(x)x = self._conv_3(x)return self._residual_stack(x)class Decoder(nn.Module):def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):super(Decoder, self).__init__()self._conv_1 = nn.Conv2d(in_channels=in_channels,out_channels=num_hiddens,kernel_size=3, stride=1, padding=1)self._residual_stack = ResidualStack(in_channels=num_hiddens,num_hiddens=num_hiddens,num_residual_layers=num_residual_layers,num_residual_hiddens=num_residual_hiddens)self._conv_trans_1 = nn.ConvTranspose2d(in_channels=num_hiddens, out_channels=num_hiddens//2,kernel_size=4, stride=2, padding=1)self._conv_trans_2 = nn.ConvTranspose2d(in_channels=num_hiddens//2, out_channels=3,kernel_size=4, stride=2, padding=1)def forward(self, inputs):x = self._conv_1(inputs)x = self._residual_stack(x)x = self._conv_trans_1(x)x = F.relu(x)return self._conv_trans_2(x)class Model(nn.Module):def __init__(self, num_hiddens, num_residual_layers, num_residual_hiddens, num_embeddings, embedding_dim, commitment_cost, decay=0):super(Model, self).__init__()self._encoder = Encoder(3, num_hiddens,num_residual_layers, num_residual_hiddens)self._pre_vq_conv = nn.Conv2d(in_channels = num_hiddens, out_channels = embedding_dim,kernel_size = 1, stride = 1)if decay > 0.0:self._vq_vae = VectorQuantizerEMA(num_embeddings, embedding_dim, commitment_cost, decay)else:self._vq_vae = VectorQuantizer(num_embeddings, embedding_dim,commitment_cost)self._decoder = Decoder(embedding_dim,num_hiddens, num_residual_layers, num_residual_hiddens)def forward(self, x): # x.shape: B(256) C(3) H(32) W(32)z = self._encoder(x)z = self._pre_vq_conv(z)loss, quantized, perplexity, _ = self._vq_vae(z)x_recon = self._decoder(quantized) # decoder解码还原图像 B(256) C(3) H(32) W(32)return loss, x_recon, perplexity

完整代码参考:liujf69/VQ-VAE

3--部分细节解读:

重构损失计算:

        计算源图像和重构图像的MSE损失

vq_loss, data_recon, perplexity = self.model(data)
recon_error = F.mse_loss(data_recon, data) / self.data_variance 

VQ量化损失计算:

        inputs表示Encoder的输出,quantized是Codebook中与 inputs 最接近的向量;

# Loss
e_latent_loss = F.mse_loss(quantized.detach(), inputs)  # 论文中损失函数的第三项
q_latent_loss = F.mse_loss(quantized, inputs.detach()) # 论文中损失函数的第二项
loss = q_latent_loss + self._commitment_cost * e_latent_loss

Decoder的梯度复制到Encoder中:inputs是Encoder的输出,quantized是Decoder的输入;

quantized = inputs + (quantized - inputs).detach() # 梯度复制

这篇关于AIGC笔记--VQVAE模型搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611562

相关文章

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

如何使用Haporxy搭建Web群集

《如何使用Haporxy搭建Web群集》Haproxy是目前比较流行的一种群集调度工具,同类群集调度工具有很多如LVS和Nginx,本案例介绍使用Haproxy及Nginx搭建一套Web群集,感兴趣的... 目录一、案例分析1.案例概述2.案例前置知识点2.1 HTTP请求2.2 负载均衡常用调度算法 2.

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

如何搭建并配置HTTPD文件服务及访问权限控制

《如何搭建并配置HTTPD文件服务及访问权限控制》:本文主要介绍如何搭建并配置HTTPD文件服务及访问权限控制的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、安装HTTPD服务二、HTTPD服务目录结构三、配置修改四、服务启动五、基于用户访问权限控制六、

pytest+allure环境搭建+自动化实践过程

《pytest+allure环境搭建+自动化实践过程》:本文主要介绍pytest+allure环境搭建+自动化实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、pytest下载安装1.1、安装pytest1.2、检测是否安装成功二、allure下载安装2.

使用vscode搭建pywebview集成vue项目实践

《使用vscode搭建pywebview集成vue项目实践》:本文主要介绍使用vscode搭建pywebview集成vue项目实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录环境准备项目源码下载项目说明调试与生成可执行文件核心代码说明总结本节我们使用pythonpywebv

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Windows Server 2025 搭建NPS-Radius服务器的步骤

《WindowsServer2025搭建NPS-Radius服务器的步骤》本文主要介绍了通过微软的NPS角色实现一个Radius服务器,身份验证和证书使用微软ADCS、ADDS,具有一定的参考价... 目录简介示意图什么是 802.1X?核心作用802.1X的组成角色工作流程简述802.1X常见应用802.

Spring Cloud GateWay搭建全过程

《SpringCloudGateWay搭建全过程》:本文主要介绍SpringCloudGateWay搭建全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Spring Cloud GateWay搭建1.搭建注册中心1.1添加依赖1.2 配置文件及启动类1.3 测