transbigdata 笔记:官方文档案例1(出租车GPS数据处理)

本文主要是介绍transbigdata 笔记:官方文档案例1(出租车GPS数据处理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 读取数据

官方文档中给定的出租车数据在transbigdata/docs/source/gallery/data/TaxiData-Sample.csv at main · ni1o1/transbigdata (github.com)

1.1 出租车数据 

 

data=pd.read_csv('TaxiData-Sample.csv',names= ['VehicleNum', 'Time', 'Lng', 'Lat', 'OpenStatus', 'Speed'])
data

1.2 深圳数据

sz=gpd.read_file('sz.json')
sz

sz.plot(figsize=(15,8))

 

2 清理数据

2.1 清理深圳之外的数据

transbigdata笔记:数据预处理-CSDN博客

data = tbd.clean_outofshape(data, sz, col=['Lng', 'Lat'], accuracy=500)
data

2.2 清理异常记录点

transbigdata笔记:数据预处理-CSDN博客

异常记录点,指的是记录点前后的出租车状态(有乘客/无乘客)和自己的出租车状态不一样

data = tbd.clean_taxi_status(data, col=['VehicleNum', 'Time', 'OpenStatus'])
data

3 数据网格化

3.1 定义网格坐标系

transbigdata笔记:数据栅格化-CSDN博客

官方样例是取了经纬度的四个极值,其实直接把sz作为参数输进去也可以

params=tbd.area_to_params(sz,accuracy=500)
params
'''
{'slon': 113.74627986426263,'slat': 22.39928709355355,'deltalon': 0.0048717524501333395,'deltalat': 0.004496605206422906,'theta': 0,'method': 'rect','gridsize': 500}
'''

3.2 将GPS 映射到对应的网格

这里LONCOL和LATCOL列就可以指定一个网格

transbigdata笔记:数据栅格化-CSDN博客

data['LONCOL'], data['LATCOL'] = tbd.GPS_to_grid(data['Lng'], data['Lat'], params)
data

3,2,1 统计每个网格中出现的车辆的数量

dataset=data.groupby(['LONCOL', 'LATCOL'])['VehicleNum'].count().reset_index()
dataset

3.2.2 将网格对应的几何信息写入DataFrame

transbigdata笔记:数据栅格化-CSDN博客

dataset['geometry'] = tbd.grid_to_polygon([dataset['LONCOL'], dataset['LATCOL']], params)
dataset

3.3 绘制网格

datatest=gpd.GeoDataFrame(dataset)
plt.figure(1,(16, 6), dpi=300)
#图的大小和size
ax1 = plt.subplot(111)
#在图形中创建了一个子图。111 表示图形布局是1行1列,且这是第1个子图。
datatest.plot(ax=ax1,column='VehicleNum',legend=True)
'''
在子图ax1上绘制数据。
column='VehicleNum' 指定了要绘制的数据列。
legend=True 表示在图表中包含图例。
'''
plt.xticks([], fontsize=10)
plt.yticks([], fontsize=10)
#设置x轴和y轴的刻度(为空)
plt.title('Counting of Taxi GPS Trajectory Points', fontsize=12);
#设置标题

3.3.1 scheme 指定数据分类方案

geopandas 笔记:plot 的scheme-CSDN博客

plt.figure(1,(16, 6), dpi=300)
#图的大小和size
ax1 = plt.subplot(111)
#在图形中创建了一个子图。111 表示图形布局是1行1列,且这是第1个子图。
datatest.plot(ax=ax1,column='VehicleNum',legend=True, scheme='quantiles')
'''
在子图ax1上绘制数据。
column='VehicleNum' 指定了要绘制的数据列。
legend=True 表示在图表中包含图例。
scheme指定数据分类方案
'''
plt.xticks([], fontsize=10)
plt.yticks([], fontsize=10)
#设置x轴和y轴的刻度(为空)
plt.title('Counting of Taxi GPS Trajectory Points', fontsize=12);
#设置标题

4 提取&聚合出租车行程

 4.1 提取OD

oddata = tbd.taxigps_to_od(data,col = ['VehicleNum', 'Time', 'Lng', 'Lat', 'OpenStatus'])
oddata

4.2  聚合OD ,获得轨迹的geometry

od_gdf = tbd.odagg_grid(oddata, params)
od_gdf

4.3 绘制OD trip

fig = plt.figure(1, (16, 6), dpi=150) 
# 确定图形高为6,宽为8;图形清晰度
ax1 = plt.subplot(111)od_gdf.plot(ax=ax1, column='count', legend=True)
plt.xticks([], fontsize=10)
plt.yticks([], fontsize=10)
plt.title('OD Trips', fontsize=12);

5 提取出租车轨迹

5.0 提取载客行程和空闲行程

data_deliver, data_idle = tbd.taxigps_traj_point(data,oddata,col=['VehicleNum','Time','Lng','Lat','OpenStatus'])

返回载客行程和空闲行程的轨迹点 

data_idle

data_deliver

5.1 一个一个记录汇总成一条一条线

注:官方文档里写的points_to_traj已经无了,现在是traj_to_linestring

traj_deliver = tbd.traj_to_linestring(data_deliver)
traj_deliver

5.2 用kepler.gl可视化轨迹

tbd.visualization_trip(data_deliver)

这篇关于transbigdata 笔记:官方文档案例1(出租车GPS数据处理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611411

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Java操作Word文档的全面指南

《Java操作Word文档的全面指南》在Java开发中,操作Word文档是常见的业务需求,广泛应用于合同生成、报表输出、通知发布、法律文书生成、病历模板填写等场景,本文将全面介绍Java操作Word文... 目录简介段落页头与页脚页码表格图片批注文本框目录图表简介Word编程最重要的类是org.apach

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

Python Pillow 库详解文档(最新推荐)

《PythonPillow库详解文档(最新推荐)》Pillow是Python中最流行的图像处理库,它是PythonImagingLibrary(PIL)的现代分支和继承者,本文给大家介绍Pytho... 目录python Pillow 库详解文档简介安装核心模块架构Image 模块 - 核心图像处理基本导入

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据