Pandas实战案例 | 冷空气活动寒潮级别分类

2024-01-15 20:40

本文主要是介绍Pandas实战案例 | 冷空气活动寒潮级别分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理。

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

python免费学习资料以及群交流解答点击即可加入


大家好,今天介绍如何把基础函数groupby和diff方法通过复杂而清晰逻辑去解决令人头大的需求,优雅~
目录:

  • 需求分析
  • 读取数据
  • 拿一个分组进行测试
  • 获取满足寒潮定义条件的对应数据id
  • 分组编号生成器
  • 测试对所有站计算寒潮
  • 测试所有寒潮级别
  • 完整代码

需求分析

寒潮的定义:

 

数据的输入和输出格式:

 

统计口径确认:

 

我一开始不理解,24小时内降温幅度大于8度如何计算,与需求方确认后,可以通过2日温度之差来计算。同样48小时内降温幅度可以用3日温度之差来代表,72小时内降温幅度可以用4日温度之差来代表,需求方的解释:

 

好了,理解清楚了需求,咱们就可以开始干活了:

读取数据

首先读取数据:

import pandas as pd
import numpy as npdf = pd.read_csv("data.csv")
df

结果:

 

拿一个分组进行测试

取出某个分组,用于测试:

tmp = df.groupby('number').get_group('e332')
tmp

结果:

 

获取满足寒潮定义条件的对应数据id

 

上图的极端情况显示,三大满足条件的id可能出现重复的情况,所以我使用了set这个无序不重复集合来保存id:

cold_wave_idxs = set()
# 获取2天内降温幅度超过8对应的数据id
ids = tmp.index[tmp.temperature.diff(-1) >= 8].values
cold_wave_idxs.update(ids)
cold_wave_idxs.update(ids+1)
# 获取3天内降温幅度超过10对应的数据id
ids = tmp.index[tmp.temperature.diff(-2) >= 10].values
cold_wave_idxs.update(ids)
cold_wave_idxs.update(ids+1)
cold_wave_idxs.update(ids+2)
# 获取4天内降温幅度超过12对应的数据id
ids = tmp.index[tmp.temperature.diff(-3) >= 12].values
cold_wave_idxs.update(ids)
cold_wave_idxs.update(ids+1)
cold_wave_idxs.update(ids+2)
cold_wave_idxs.update(ids+3)
# 排序并转换成列表
cold_wave_idxs = sorted(cold_wave_idxs)
print(cold_wave_idxs)

结果:

[11928, 11929, 11930, 11931, 11939, 11940, 11949, 11950, 11951, 11952, 11955, 11956, 11957, 11958, 12007, 12008, 12154, 12155, 12192, 12193, 12201, 12202, 12203, 12223, 12224, 12225, 12228, 12229, 12230]
上述代码中cold_wave_idxs.update(ids+1)表示,把ids列表里每个id的后一个id也添加到最终列表里,利用了numpy数组广播变量的特性,+2和+3也是同理。

上述结果就是从站码为'e332'的分组中计算出满足寒潮定义的对应数据id。

从结果可以看出,凡是连续的id都可以看作一个寒潮的过程,所以现在我们需要将每个寒潮过程都分为一组,为了作这样的分组,我发明了一种分组编号生成器的写法,下面已经封装成了一个方法:

分组编号生成器

def generate_group_num(values, diff=1):group_ids = []group_id = 0last_v = 0for value in values:if value-last_v > diff:group_id += 1group_ids.append(group_id)last_v = valuereturn group_ids

上面的方法实现了一个分组编号生成器,对于一段序列凡是连续的数字都会给一个相同的分组编号。

测试一下分组效果:

for i, cold_wave_idx_serial in pd.Series(cold_wave_idxs).groupby(generate_group_num(cold_wave_idxs)):cold_wave_idx_serial = cold_wave_idx_serial.valuesprint(cold_wave_idx_serial)

结果:

[11928 11929 11930 11931]
[11939 11940]
[11949 11950 11951 11952]
[11955 11956 11957 11958]
[12007 12008]
[12154 12155]
[12192 12193]
[12201 12202 12203]
[12223 12224 12225]
[12228 12229 12230]

从结果可以看到,凡是连续的序列都分到了一组,不是连续的序列就没有分到一组。

测试对所有站计算寒潮

首先将前面的测试好的用于获取满足寒潮定义的id的过程封装成方法:

def get_cold_wave_idxs(df, cold_wave_level=(8, 10, 12)):cold_wave_idxs = set()ids = df.index[df.temperature.diff(-1) >= cold_wave_level[0]].valuescold_wave_idxs.update(ids)cold_wave_idxs.update(ids+1)ids = df.index[df.temperature.diff(-2) >= cold_wave_level[1]].valuescold_wave_idxs.update(ids)cold_wave_idxs.update(ids+1)cold_wave_idxs.update(ids+2)ids = df.index[df.temperature.diff(-3) >= cold_wave_level[2]].valuescold_wave_idxs.update(ids)cold_wave_idxs.update(ids+1)cold_wave_idxs.update(ids+2)cold_wave_idxs.update(ids+3)return sorted(cold_wave_idxs)

然后运行:

cold_wave_result = []for number, tmp in df.groupby('number'):cold_wave_idxs = get_cold_wave_idxs(tmp, (8, 10, 12))for i, cold_wave_idx_serial in pd.Series(cold_wave_idxs).groupby(generate_group_num(cold_wave_idxs)):cold_wave_idx_serial = cold_wave_idx_serial.valuesstart_id, end_id = cold_wave_idx_serial[0], cold_wave_idx_serial[-1]#  假如最低温度小于4度,则说明满足全部条件if tmp.loc[end_id, 'temperature'] <= 4:cold_wave_result.append((number, tmp.loc[start_id, 'date'], tmp.loc[end_id, 'date'],tmp.loc[start_id, 'temperature'], tmp.loc[end_id, 'temperature'],end_id-start_id+1,tmp.loc[start_id, 'temperature'] -tmp.loc[end_id, 'temperature'],'寒潮'))
cold_wave_result = pd.DataFrame(cold_wave_result, columns=['站号', '开始日期', '结束日期', '开始温度', '结束温度',  '寒潮天数', '温度差', '寒潮类型'])
cold_wave_result

结果:


感觉没啥问题。

 

所有寒潮级别都测试一下:

测试所有寒潮级别

cold_wave_all = [{'cold_wave_temperature_diffs': (8, 10, 12),'min_temperature_limit': 4,'cold_wave_type': '寒潮'},{'cold_wave_temperature_diffs': (10, 12, 14),'min_temperature_limit': 2,'cold_wave_type': '强寒潮'},{'cold_wave_temperature_diffs': (12, 14, 16),'min_temperature_limit': 0,'cold_wave_type': '超强寒潮'}
]
cold_wave_result = []for number, tmp in df.groupby('number'):for cold_wave_dict in cold_wave_all:cold_wave_idxs = get_cold_wave_idxs(tmp, cold_wave_dict['cold_wave_temperature_diffs'])if len(cold_wave_idxs) < 2:continuefor i, cold_wave_idx_serial in pd.Series(cold_wave_idxs).groupby(generate_group_num(cold_wave_idxs)):cold_wave_idx_serial = cold_wave_idx_serial.valuesstart_id, end_id = cold_wave_idx_serial[0], cold_wave_idx_serial[-1]#  假如最低温度小于指定度数,则说明满足全部条件if tmp.loc[end_id, 'temperature'] <= cold_wave_dict['min_temperature_limit']:cold_wave_result.append((number, tmp.loc[start_id, 'date'], tmp.loc[end_id, 'date'],tmp.loc[start_id, 'temperature'], tmp.loc[end_id, 'temperature'],end_id-start_id+1,tmp.loc[start_id, 'temperature'] - tmp.loc[end_id, 'temperature'],cold_wave_dict['cold_wave_type']))
cold_wave_result = pd.DataFrame(cold_wave_result, columns=['站号', '开始日期', '结束日期', '开始温度', '结束温度',  '寒潮天数', '温度差', '寒潮类型'])
cold_wave_result

结果:


暂时也未发现错误。那么整理一下最终代码吧:

 

完整代码

import pandas as pd
import numpy as npdef generate_group_num(values, diff=1):group_ids = []group_id = 0last_v = 0for value in values:if value-last_v > diff:group_id += 1group_ids.append(group_id)last_v = valuereturn group_idsdef get_cold_wave_idxs(df, cold_wave_level=(8, 10, 12)):cold_wave_idxs = set()ids = df.index[df.temperature.diff(-1) >= cold_wave_level[0]].valuescold_wave_idxs.update(ids)cold_wave_idxs.update(ids+1)ids = df.index[df.temperature.diff(-2) >= cold_wave_level[1]].valuescold_wave_idxs.update(ids)cold_wave_idxs.update(ids+1)cold_wave_idxs.update(ids+2)ids = df.index[df.temperature.diff(-3) >= cold_wave_level[2]].valuescold_wave_idxs.update(ids)cold_wave_idxs.update(ids+1)cold_wave_idxs.update(ids+2)cold_wave_idxs.update(ids+3)return sorted(cold_wave_idxs)df = pd.read_csv("data.csv")
cold_wave_all = [{'cold_wave_temperature_diffs': (8, 10, 12),'min_temperature_limit': 4,'cold_wave_type': '寒潮'},{'cold_wave_temperature_diffs': (10, 12, 14),'min_temperature_limit': 2,'cold_wave_type': '强寒潮'},{'cold_wave_temperature_diffs': (12, 14, 16),'min_temperature_limit': 0,'cold_wave_type': '超强寒潮'}
]
cold_wave_result = []for number, tmp in df.groupby('number'):for cold_wave_dict in cold_wave_all:cold_wave_idxs = get_cold_wave_idxs(tmp, cold_wave_dict['cold_wave_temperature_diffs'])if len(cold_wave_idxs) < 2:continuefor i, cold_wave_idx_serial in pd.Series(cold_wave_idxs).groupby(generate_group_num(cold_wave_idxs)):cold_wave_idx_serial = cold_wave_idx_serial.valuesstart_id, end_id = cold_wave_idx_serial[0], cold_wave_idx_serial[-1]#  假如最低温度小于指定度数,则说明满足全部条件if tmp.loc[end_id, 'temperature'] <= cold_wave_dict['min_temperature_limit']:cold_wave_result.append((number, tmp.loc[start_id, 'date'], tmp.loc[end_id, 'date'],tmp.loc[start_id, 'temperature'], tmp.loc[end_id, 'temperature'],end_id-start_id+1,tmp.loc[start_id, 'temperature'] - tmp.loc[end_id, 'temperature'],cold_wave_dict['cold_wave_type']))
cold_wave_result = pd.DataFrame(cold_wave_result, columns=['站号', '开始日期', '结束日期', '开始温度', '结束温度',  '寒潮天数', '温度差', '寒潮类型'])
cold_wave_result.to_excel("cold_wave.xlsx", index=False)

最终得到的结果:

这篇关于Pandas实战案例 | 冷空气活动寒潮级别分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610151

相关文章

PostgreSQL 默认隔离级别的设置

《PostgreSQL默认隔离级别的设置》PostgreSQL的默认事务隔离级别是读已提交,这是其事务处理系统的基础行为模式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一 默认隔离级别概述1.1 默认设置1.2 各版本一致性二 读已提交的特性2.1 行为特征2.2

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

六个案例搞懂mysql间隙锁

《六个案例搞懂mysql间隙锁》MySQL中的间隙是指索引中两个索引键之间的空间,间隙锁用于防止范围查询期间的幻读,本文主要介绍了六个案例搞懂mysql间隙锁,具有一定的参考价值,感兴趣的可以了解一下... 目录概念解释间隙锁详解间隙锁触发条件间隙锁加锁规则案例演示案例一:唯一索引等值锁定存在的数据案例二:

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

MySQL 表的内外连接案例详解

《MySQL表的内外连接案例详解》本文给大家介绍MySQL表的内外连接,结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录表的内外连接(重点)内连接外连接表的内外连接(重点)内连接内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce