二叉树前序、中序、后序遍历相互求法 (原理,程序)

2024-01-15 20:38

本文主要是介绍二叉树前序、中序、后序遍历相互求法 (原理,程序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


今天来总结下二叉树前序、中序、后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明。

     首先,我们看看前序、中序、后序遍历的特性: 
前序遍历: 
    1.访问根节点 
    2.前序遍历左子树 
    3.前序遍历右子树 
中序遍历: 
    1.中序遍历左子树 
    2.访问根节点 
    3.中序遍历右子树 
后序遍历: 
    1.后序遍历左子树 
    2.后序遍历右子树 
    3.访问根节点

一、已知前序、中序遍历,求后序遍历

例:

前序遍历:         GDAFEMHZ

中序遍历:         ADEFGHMZ

画树求法:第一步,根据前序遍历的特点,我们知道根结点为G

              第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

              第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。

              第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。

            第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

4 打印当前根。

那么,我们可以画出这个二叉树的形状:

那么,根据后序的遍历规则,我们可以知道,后序遍历顺序为:AEFDHZMG

编程求法:(依据上面的思路,写递归程序)

复制代码
 1 #include <iostream>  
 2 #include <fstream>  
 3 #include <string>  
 4 
 5 struct TreeNode
 6 {
 7   struct TreeNode* left;
 8   struct TreeNode* right;
 9   char  elem;
10 };
11 
12 void BinaryTreeFromOrderings(char* inorder, char* preorder, int length)
13 {
14   if(length == 0)
15     {
16       //cout<<"invalid length";
17       return;
18     }
19   TreeNode* node = new TreeNode;//Noice that [new] should be written out.
20   node->elem = *preorder;
21   int rootIndex = 0;
22   for(;rootIndex < length; rootIndex++)
23     {
24       if(inorder[rootIndex] == *preorder)
25       break;
26     }
27   //Left
28   BinaryTreeFromOrderings(inorder, preorder +1, rootIndex);
29   //Right
30   BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1));
31   cout<<node->elem<<endl;
32   return;
33 }
34 
35 
36 int main(int argc, char* argv[])
37 {
38     printf("Hello World!\n");
39     char* pr="GDAFEMHZ";
40     char* in="ADEFGHMZ";
41   
42     BinaryTreeFromOrderings(in, pr, 8);
43 
44     printf("\n");
45     return 0;
46 }
复制代码

输出的结果为:AEFDHZMG

二、已知中序和后序遍历,求前序遍历

依然是上面的题,这次我们只给出中序和后序遍历:

中序遍历:       ADEFGHMZ

后序遍历:       AEFDHZMG

画树求法:第一步,根据后序遍历的特点,我们知道后序遍历最后一个结点即为根结点,即根结点为G。

              第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

              第三步,观察左子树ADEF,后序遍历中,左子树AEFD的最后一个为左子树的root,也就是D为左子树的中的根节点。由中序遍历得,A为D的左子树,EF为D的右子树。观察后序遍历,EF中最后的一个F为其root。可以知道,E为F的左子树。

              第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过后序遍历求得。在后序遍历中,HZM最后一个M一定是右子树的根节点。

            第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

4 打印当前根。

这样,我们就可以画出二叉树的形状,如上图所示,这里就不再赘述。

那么,前序遍历:         GDAFEMHZ

编程求法:(并且验证我们的结果是否正确)

复制代码
#include <iostream>
#include <fstream>
#include <string>struct TreeNode
{struct TreeNode* left;struct TreeNode* right;char  elem;
};TreeNode* BinaryTreeFromOrderings(char* inorder, char* aftorder, int length)
{if(length == 0){return NULL;}TreeNode* node = new TreeNode;//Noice that [new] should be written out.node->elem = *(aftorder+length-1);std::cout<<node->elem<<std::endl;int rootIndex = 0;for(;rootIndex < length; rootIndex++)//a variation of the loop
    {if(inorder[rootIndex] ==  *(aftorder+length-1))break;}node->left = BinaryTreeFromOrderings(inorder, aftorder , rootIndex);node->right = BinaryTreeFromOrderings(inorder + rootIndex + 1, aftorder + rootIndex , length - (rootIndex + 1));return node;
}int main(int argc, char** argv)
{char* af="AEFDHZMG";    char* in="ADEFGHMZ"; BinaryTreeFromOrderings(in, af, 8); printf("\n");return 0;
}
复制代码

输出结果:GDAFEMHZ


http://www.cnblogs.com/fzhe/archive/2013/01/07/2849040.html

这篇关于二叉树前序、中序、后序遍历相互求法 (原理,程序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/610138

相关文章

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt