模块调用、Dropout以及残差(residual)连接函数

2024-01-15 12:44

本文主要是介绍模块调用、Dropout以及残差(residual)连接函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

主要函数dropout_wrapper实现张量经模块前向传输再经过dropout层,最后和输入张量相加输出。函数调用:dropout_wrapper_fn <- dropout_wrapper <- apply_dropout

import jax 
import functools
import ml_collectionsNUM_RES = 'num residues placeholder'
NUM_MSA_SEQ = 'msa placeholder'
NUM_EXTRA_SEQ = 'extra msa placeholder'
NUM_TEMPLATES = 'num templates placeholder'## 模型参数
CONFIG = ml_collections.ConfigDict({'data': {'common': {'masked_msa': {'profile_prob': 0.1,'same_prob': 0.1,'uniform_prob': 0.1},'max_extra_msa': 1024,'msa_cluster_features': True,'num_recycle': 3,'reduce_msa_clusters_by_max_templates': False,'resample_msa_in_recycling': True,'template_features': ['template_all_atom_positions', 'template_sum_probs','template_aatype', 'template_all_atom_masks','template_domain_names'],'unsupervised_features': ['aatype', 'residue_index', 'sequence', 'msa', 'domain_name','num_alignments', 'seq_length', 'between_segment_residues','deletion_matrix'],'use_templates': False,},'eval': {'feat': {'aatype': [NUM_RES],'all_atom_mask': [NUM_RES, None],'all_atom_positions': [NUM_RES, None, None],'alt_chi_angles': [NUM_RES, None],'atom14_alt_gt_exists': [NUM_RES, None],'atom14_alt_gt_positions': [NUM_RES, None, None],'atom14_atom_exists': [NUM_RES, None],'atom14_atom_is_ambiguous': [NUM_RES, None],'atom14_gt_exists': [NUM_RES, None],'atom14_gt_positions': [NUM_RES, None, None],'atom37_atom_exists': [NUM_RES, None],'backbone_affine_mask': [NUM_RES],'backbone_affine_tensor': [NUM_RES, None],'bert_mask': [NUM_MSA_SEQ, NUM_RES],'chi_angles': [NUM_RES, None],'chi_mask': [NUM_RES, None],'extra_deletion_value': [NUM_EXTRA_SEQ, NUM_RES],'extra_has_deletion': [NUM_EXTRA_SEQ, NUM_RES],'extra_msa': [NUM_EXTRA_SEQ, NUM_RES],'extra_msa_mask': [NUM_EXTRA_SEQ, NUM_RES],'extra_msa_row_mask': [NUM_EXTRA_SEQ],'is_distillation': [],'msa_feat': [NUM_MSA_SEQ, NUM_RES, None],'msa_mask': [NUM_MSA_SEQ, NUM_RES],'msa_row_mask': [NUM_MSA_SEQ],'pseudo_beta': [NUM_RES, None],'pseudo_beta_mask': [NUM_RES],'random_crop_to_size_seed': [None],'residue_index': [NUM_RES],'residx_atom14_to_atom37': [NUM_RES, None],'residx_atom37_to_atom14': [NUM_RES, None],'resolution': [],'rigidgroups_alt_gt_frames': [NUM_RES, None, None],'rigidgroups_group_exists': [NUM_RES, None],'rigidgroups_group_is_ambiguous': [NUM_RES, None],'rigidgroups_gt_exists': [NUM_RES, None],'rigidgroups_gt_frames': [NUM_RES, None, None],'seq_length': [],'seq_mask': [NUM_RES],'target_feat': [NUM_RES, None],'template_aatype': [NUM_TEMPLATES, NUM_RES],'template_all_atom_masks': [NUM_TEMPLATES, NUM_RES, None],'template_all_atom_positions': [NUM_TEMPLATES, NUM_RES, None, None],'template_backbone_affine_mask': [NUM_TEMPLATES, NUM_RES],'template_backbone_affine_tensor': [NUM_TEMPLATES, NUM_RES, None],'template_mask': [NUM_TEMPLATES],'template_pseudo_beta': [NUM_TEMPLATES, NUM_RES, None],'template_pseudo_beta_mask': [NUM_TEMPLATES, NUM_RES],'template_sum_probs': [NUM_TEMPLATES, None],'true_msa': [NUM_MSA_SEQ, NUM_RES]},'fixed_size': True,'subsample_templates': False,  # We want top templates.'masked_msa_replace_fraction': 0.15,'max_msa_clusters': 512,'max_templates': 4,'num_ensemble': 1,},},'model': {'embeddings_and_evoformer': {'evoformer_num_block': 48,'evoformer': {'msa_row_attention_with_pair_bias': {'dropout_rate': 0.15,'gating': True,'num_head': 8,'orientation': 'per_row','shared_dropout': True},'msa_column_attention': {'dropout_rate': 0.0,'gating': True,'num_head': 8,'orientation': 'per_column','shared_dropout': True},'msa_transition': {'dropout_rate': 0.0,'num_intermediate_factor': 4,'orientation': 'per_row','shared_dropout': True},'outer_product_mean': {'first': False,'chunk_size': 128,'dropout_rate': 0.0,'num_outer_channel': 32,'orientation': 'per_row','shared_dropout': True},'triangle_attention_starting_node': {'dropout_rate': 0.25,'gating': True,'num_head': 4,'orientation': 'per_row','shared_dropout': True},'triangle_attention_ending_node': {'dropout_rate': 0.25,'gating': True,'num_head': 4,'orientation': 'per_column','shared_dropout': True},'triangle_multiplication_outgoing': {'dropout_rate': 0.25,'equation': 'ikc,jkc->ijc','num_intermediate_channel': 128,'orientation': 'per_row','shared_dropout': True,'fuse_projection_weights': False,},'triangle_multiplication_incoming': {'dropout_rate': 0.25,'equation': 'kjc,kic->ijc','num_intermediate_channel': 128,'orientation': 'per_row','shared_dropout': True,'fuse_projection_weights': False,},'pair_transition': {'dropout_rate': 0.0,'num_intermediate_factor': 4,'orientation': 'per_row','shared_dropout': True}},'extra_msa_channel': 64,'extra_msa_stack_num_block': 4,'max_relative_feature': 32,'msa_channel': 256,'pair_channel': 128,'prev_pos': {'min_bin': 3.25,'max_bin': 20.75,'num_bins': 15},'recycle_features': True,'recycle_pos': True,'seq_channel': 384,'template': {'attention': {'gating': False,'key_dim': 64,'num_head': 4,'value_dim': 64},'dgram_features': {'min_bin': 3.25,'max_bin': 50.75,'num_bins': 39},'embed_torsion_angles': False,'enabled': False,'template_pair_stack': {'num_block': 2,'triangle_attention_starting_node': {'dropout_rate': 0.25,'gating': True,'key_dim': 64,'num_head': 4,'orientation': 'per_row','shared_dropout': True,'value_dim': 64},'triangle_attention_ending_node': {'dropout_rate': 0.25,'gating': True,'key_dim': 64,'num_head': 4,'orientation': 'per_column','shared_dropout': True,'value_dim': 64},'triangle_multiplication_outgoing': {'dropout_rate': 0.25,'equation': 'ikc,jkc->ijc','num_intermediate_channel': 64,'orientation': 'per_row','shared_dropout': True,'fuse_projection_weights': False,},'triangle_multiplication_incoming': {'dropout_rate': 0.25,'equation': 'kjc,kic->ijc','num_intermediate_channel': 64,'orientation': 'per_row','shared_dropout': True,'fuse_projection_weights': False,},'pair_transition': {'dropout_rate': 0.0,'num_intermediate_factor': 2,'orientation': 'per_row','shared_dropout': True}},'max_templates': 4,'subbatch_size': 128,'use_template_unit_vector': False,}},'global_config': {'deterministic': False,'multimer_mode': False,'subbatch_size': 4,'use_remat': False,'zero_init': True,'eval_dropout': False,},'heads': {'distogram': {'first_break': 2.3125,'last_break': 21.6875,'num_bins': 64,'weight': 0.3},'predicted_aligned_error': {# `num_bins - 1` bins uniformly space the# [0, max_error_bin A] range.# The final bin covers [max_error_bin A, +infty]# 31A gives bins with 0.5A width.'max_error_bin': 31.,'num_bins': 64,'num_channels': 128,'filter_by_resolution': True,'min_resolution': 0.1,'max_resolution': 3.0,'weight': 0.0,},'experimentally_resolved': {'filter_by_resolution': True,'max_resolution': 3.0,'min_resolution': 0.1,'weight': 0.01},'structure_module': {'num_layer': 8,'fape': {'clamp_distance': 10.0,'clamp_type': 'relu','loss_unit_distance': 10.0},'angle_norm_weight': 0.01,'chi_weight': 0.5,'clash_overlap_tolerance': 1.5,'compute_in_graph_metrics': True,'dropout': 0.1,'num_channel': 384,'num_head': 12,'num_layer_in_transition': 3,'num_point_qk': 4,'num_point_v': 8,'num_scalar_qk': 16,'num_scalar_v': 16,'position_scale': 10.0,'sidechain': {'atom_clamp_distance': 10.0,'num_channel': 128,'num_residual_block': 2,'weight_frac': 0.5,'length_scale': 10.,},'structural_violation_loss_weight': 1.0,'violation_tolerance_factor': 12.0,'weight': 1.0},'predicted_lddt': {'filter_by_resolution': True,'max_resolution': 3.0,'min_resolution': 0.1,'num_bins': 50,'num_channels': 128,'weight': 0.01},'masked_msa': {'num_output': 23,'weight': 2.0},},'num_recycle': 3,'resample_msa_in_recycling': True},
})c = CONFIG.model.embeddings_and_evoformer.evoformer
gc = CONFIG.model.global_configdef apply_dropout(*, tensor, safe_key, rate, is_training, broadcast_dim=None):"""Applies dropout to a tensor."""if is_training and rate != 0.0:shape = list(tensor.shape)if broadcast_dim is not None:shape[broadcast_dim] = 1keep_rate = 1.0 - ratekeep = jax.random.bernoulli(safe_key.get(), keep_rate, shape=shape)return keep * tensor / keep_rateelse:return tensordef dropout_wrapper(module,input_act,mask,safe_key,global_config,output_act=None,is_training=True,**kwargs):"""Applies module + dropout + residual update."""if output_act is None:output_act = input_actgc = global_configresidual = module(input_act, mask, is_training=is_training, **kwargs)dropout_rate = 0.0 if gc.deterministic else module.config.dropout_rate# Will override `is_training` to True if want to use dropout.should_apply_dropout = True if gc.eval_dropout else is_trainingif module.config.shared_dropout:if module.config.orientation == 'per_row':broadcast_dim = 0else:broadcast_dim = 1else:broadcast_dim = Noneresidual = apply_dropout(tensor=residual,safe_key=safe_key,rate=dropout_rate,is_training=should_apply_dropout,broadcast_dim=broadcast_dim)new_act = output_act + residualreturn new_act# functools.partial 部分应用(partial application)一个函数.
# 即固定函数的一些参数,从而创建一个新的函数。
dropout_wrapper_fn = functools.partial(dropout_wrapper, is_training=True, global_config=gc)


 

这篇关于模块调用、Dropout以及残差(residual)连接函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/608930

相关文章

java.sql.SQLTransientConnectionException连接超时异常原因及解决方案

《java.sql.SQLTransientConnectionException连接超时异常原因及解决方案》:本文主要介绍java.sql.SQLTransientConnectionExcep... 目录一、引言二、异常信息分析三、可能的原因3.1 连接池配置不合理3.2 数据库负载过高3.3 连接泄漏

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Mac电脑如何通过 IntelliJ IDEA 远程连接 MySQL

《Mac电脑如何通过IntelliJIDEA远程连接MySQL》本文详解Mac通过IntelliJIDEA远程连接MySQL的步骤,本文通过图文并茂的形式给大家介绍的非常详细,感兴趣的朋友跟... 目录MAC电脑通过 IntelliJ IDEA 远程连接 mysql 的详细教程一、前缀条件确认二、打开 ID

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N