python爬虫小练习——爬取豆瓣电影top250

2024-01-15 05:20

本文主要是介绍python爬虫小练习——爬取豆瓣电影top250,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

爬取豆瓣电影top250

需求分析

将爬取的数据导入到表格中,方便人为查看。

实现方法

三大功能
1,下载所有网页内容。
2,处理网页中的内容提取自己想要的数据
3,导入到表格中

分析网站结构需要提取的内容

在这里插入图片描述

代码

import requests
from bs4 import BeautifulSoup
import pprint
import json
import pandas as pd
import time# 构造分页数字列表
page_indexs = range(0, 250, 25)
list(page_indexs)# 请求头
headers = {'User-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/1'
}# 下载所有的网页然后交给下一个函数处理
def download_all_htmls():htmls = []for idx in page_indexs:url = "https://movie.douban.com/top250?start={}&filter=".format(idx)print("craw html", url)r = requests.get(url, headers=headers)if r.status_code != 200:raise Exception("error")htmls.append(r.text)time.sleep(0.5)return htmls# 解析HTML得到数据def parse_single_html(html):# 使用BeautifulSoup处理网页,传入参数html,使用html.parser模式处理soup = BeautifulSoup(html, 'html.parser')# 使用BeautifulSoup匹配想要的内容,使用find函数article_items = (soup.find("div", class_="article").find("ol", class_="grid_view").find_all("div", class_="item"))datas = []# 内容比较多分步提取内容for article_item in article_items:rank = article_item.find("div", class_="pic").find("em").get_text()info = article_item.find("div", class_="info")title = info.find("div", class_="hd").find("span", class_="title").get_text()stars = (info.find("div", class_="bd").find("div", class_="star").find_all("span"))rating_star = stars[0]["class"][0]rating_num = stars[1].get_text()comments = stars[3].get_text()datas.append({"rank": rank,"title": title,"rating_star": rating_star.replace("rating", "").replace("-t", ""),"rating_num": rating_num,"comments": comments.replace("人评价", "")})return dataspprint.pprint()if __name__ == '__main__':# 下载所有的网页内容htmls = download_all_htmls()# pprint.pprint(parse_single_html(htmls[0]))# 解析网页内容并追到all_datas的列表中all_datas = []for html in htmls:all_datas.extend(parse_single_html(html))# 使用pandas模块,批量导入到表格中df = pd.DataFrame(all_datas)df.to_excel("doubanTOP250.xlsx")

效果图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考文章

https://www.bilibili.com/video/BV1CY411f7yh/?p=15

这篇关于python爬虫小练习——爬取豆瓣电影top250的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/607776

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核