基于特征选择和机器学习的酒店客户流失预测和画像分析

2024-01-15 03:12

本文主要是介绍基于特征选择和机器学习的酒店客户流失预测和画像分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于特征选择和机器学习的酒店客户流失预测和画像分析

  • 基于特征选择和机器学习的酒店客户流失预测和画像分析
    • 摘要
    • 1. 业务理解
    • 2. 数据理解和处理
      • 2.1 特征理解
      • 2.2 数据基本情况
      • 2.3 特征相关性分析
    • 3. 酒店客户流失预测模型构建和评估
      • 3.1 支持向量机
      • 3.2 K-means聚类用户画像构建
    • 4. 结论与展望

基于特征选择和机器学习的酒店客户流失预测和画像分析

摘要

本文主要研究了基于特征选择和机器学习的酒店客户流失预测和画像分析。首先,作者介绍了业务背景和数据集的特征,包括用户、酒店和订单相关特征。在数据理解和处理部分,作者进行了描述性分析和特征增强。接着,作者提出了基于特征选择和机器学习的酒店客户流失预测方案。

在模型构建和评估过程中,作者使用了不同的机器学习算法进行分类任务,并绘制了ROC曲线图来展示不同模型的性能。此外,作者还对模型进行了优化,包括使用PCA降维、LDA降维、特征选择等方法。最后,作者采用了RFM模型和K-means聚类算法进行客户画像构建。

总之,本文通过深入研究酒店客户流失预测和画像分析,为携程提供了一种有效的方法来挖掘影响用户流失的关键因素,从而更好地完善产品设计、提升用户体验。
在这里插入图片描述

1. 业务理解

作为中国领先的综合性旅行服务公司,携程每天向超过2.5亿会员提供全方位的旅行服务。其中,客户流失率是考量业务成绩的一个非常关键的指标。此次竞赛的目的是深入了解用户画像及行为偏好,找到最优算法,挖掘出影响用户流失的关键因素,从而更好地完善产品设计、提升用户体验!

本次比赛提供2个数据集,分别为训练集userlostprob_train.txt和测试集userlostprob_test.txt。训练集为2016.05.15-2016.05.21期间一周的访问数据,测试集为2016.05.22-2016.05.28期间一周的访问数据。

2. 数据理解和处理

2.1 特征理解

查看数据集各特征字段,其中,label=1代表流失客户,label=0代表非流失客户。其他指标主要可以分为三种类型的数据指标:

  • 用户相关特征:访问时长、访问次数、访问酒店数、使用时间、价格偏好、星级偏好、消费能力、价格敏感指数、用户价值
  • 酒店相关特征:独立访问用户数、评论人数、评论数、历史取消率、酒店平均价格、最低价、商务属性指数等
  • 订单相关特征:历史订单数、取消率、下单距离时长、访问日期、入住日期等

2.2 数据基本情况

首先导入所需的库并读取数据。然后进行数据预处理,包括解决中文乱码问题和显示全部特征。最后对数据进行初步探索性分析。

2.3 特征相关性分析

通过计算各个特征之间的相关系数来分析它们之间的关系。从热力图中可以看出不同特征之间的相关性强弱。例如,delta_price1(用户偏好价格-24小时浏览最多酒店价格)和delta_price2(用户偏好价格-24小时浏览酒店平均价格)的相关性高达0.91,可以理解为众数和平均数的关系。此外,还可以观察到其他有趣的相关性模式。

3. 酒店客户流失预测模型构建和评估

3.1 支持向量机

使用支持向量机(SVM)对酒店客户流失进行预测,并绘制ROC曲线来展示不同模型的性能。结果显示,我们的模型具有很高的准确率和AUC得分。

3.2 K-means聚类用户画像构建

根据RFM模型和K-means聚类算法进行客户画像构建。RFM模型可以帮助我们理解客户的购买行为模式,而K-means聚类则可以将客户划分为不同的群体,从而进行更精细化的服务。

4. 结论与展望

通过对酒店客户流失预测和画像分析的研究,我们不仅能够更好地了解客户的需求和行为模式,还为提升用户体验和优化产品设计提供了有力的支持。未来,我们将继续探索更多的特征选择方法和机器学习算法,以进一步提高预测准确性和客户满意度。
想体验更多完整功能,请使用星火文档问答

这篇关于基于特征选择和机器学习的酒店客户流失预测和画像分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/607470

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串