YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割

2024-01-14 22:28

本文主要是介绍YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割

  • 前言
  • 相关介绍
  • 前提条件
  • 实验环境
  • 安装环境
  • 项目地址
    • Linux
    • Windows
  • 使用Ultralytics框架进行FastSAM图像分割
  • 参考文献

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

相关介绍

  • YOLOv8是YOLO系列实时目标检测器的最新版本,在准确性和速度方面提供了尖端的性能。基于以前的YOLO版本的进步,YOLOv8引入了新的功能和优化,使其成为各种应用中各种目标检测任务的理想选择。
  • YOLOv8官方文档:https://docs.ultralytics.com/
  • Segment Anything Model(SAM)是一种尖端的图像分割模型,可以进行快速分割,为图像分析任务提供无与伦比的多功能性。SAM 构成了 Segment Anything 计划的核心,这是一个开创性的项目,引入了用于图像分割的新颖模型、任务和数据集。
  • SAM 的先进设计使其能够在无需先验知识的情况下适应新的图像分布和任务,这一功能称为零样本传输。SAM 在庞大的SA-1B 数据集上进行训练,该数据集包含超过 10 亿个掩模,分布在 1100 万张精心策划的图像中,SAM 表现出了令人印象深刻的零样本性能,在许多情况下超越了之前完全监督的结果。
  • Segment Anything Model (SAM) 的主要特征
    • 即时分割任务: SAM 在设计时考虑了即时分割任务,允许它根据任何给定的提示生成有效的分割掩码,例如识别对象的空间或文本线索。
    • 高级架构: Segment Anything Model 采用强大的图像编码器、提示编码器和轻量级掩模解码器。这种独特的架构可以在分割任务中实现灵活的提示、实时掩模计算和歧义感知。
    • SA-1B 数据集: SA-1B 数据集由 Segment Anything 项目引入,在 1100 万张图像上包含超过 10 亿个掩模。作为迄今为止最大的分割数据集,它为 SAM 提供了多样化、大规模的训练数据源。
    • 零样本性能: SAM 在各种分段任务中显示出出色的零样本性能,使其成为适用于各种应用的即用型工具,并且对快速工程的需求极小。
  • 要深入了解 Segment Anything 模型和 SA-1B 数据集,请访问Segment Anything 网站并查看研究论文Segment Anything。
  • Fast Segment Anything Model (FastSAM) 是一种新颖的、基于 CNN 的实时解决方案,适用于 Segment Anything 任务。此任务旨在根据各种可能的用户交互提示来分割图像中的任何对象。FastSAM 显着降低了计算需求,同时保持了具有竞争力的性能,使其成为各种视觉任务的实用选择。
    在这里插入图片描述
  • FastSAM 旨在解决Segment Anything Model (SAM) 的局限性,SAM 是一种需要大量计算资源的重型 Transformer 模型。FastSAM 将分段任何任务解耦为两个连续阶段:全实例分段和提示引导选择。第一阶段使用YOLOv8-seg生成图像中所有实例的分割掩模。在第二阶段,它输出与提示相对应的感兴趣区域。
  • 主要特征
    • 实时解决方案:通过利用 CNN 的计算效率,FastSAM 为分段任务提供实时解决方案,使其对于需要快速结果的工业应用很有价值。
    • 效率和性能: FastSAM 在不影响性能质量的情况下显着减少了计算和资源需求。它实现了与 SAM 相当的性能,但大大减少了计算资源,从而实现了实时应用。
    • 提示引导的分割: FastSAM 可以在各种可能的用户交互提示的引导下分割图像中的任何对象,从而在不同场景下提供灵活性和适应性。
    • 基于 YOLOv8-seg: FastSAM 基于YOLOv8-seg,这是一个配备实例分割分支的对象检测器。这使得它能够有效地生成图像中所有实例的分割掩模。
    • 基准竞争结果:在 MS COCO 上的对象提议任务中, FastSAM在单个 NVIDIA RTX 3090 上以明显更快的速度获得了高分,展示了其效率和能力。
    • 实际应用:所提出的方法以非常高的速度(比当前方法快数十或数百倍)为大量视觉任务提供了一种新的实用解决方案。
    • 模型压缩可行性: FastSAM 展示了一种路径的可行性,该路径可以通过在结构之前引入人工先验来显着减少计算工作量,从而为一般视觉任务的大型模型架构开辟新的可能性。

前提条件

  • 熟悉Python

实验环境

matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.6.0
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.64.0
tensorboard>=2.4.1
pandas>=1.1.4
seaborn>=0.11.0

安装环境

pip install ultralytics
# 或者
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple # 国内清华源,下载速度更快

在这里插入图片描述

在这里插入图片描述

项目地址

  • 官方YOLOv8源代码地址:https://github.com/ultralytics/ultralytics.git

Linux

git clone https://github.com/ultralytics/ultralytics.git
Cloning into 'ultralytics'...
remote: Enumerating objects: 4583, done.
remote: Counting objects: 100% (4583/4583), done.
remote: Compressing objects: 100% (1270/1270), done.
remote: Total 4583 (delta 2981), reused 4576 (delta 2979), pack-reused 0
Receiving objects: 100% (4583/4583), 23.95 MiB | 1.55 MiB/s, done.
Resolving deltas: 100% (2981/2981), done.

Windows

请到https://github.com/ultralytics/ultralytics.git网站下载源代码zip压缩包。

使用Ultralytics框架进行FastSAM图像分割

在这里插入图片描述

yolo predict model=FastSAM-s.pt source=images/bird.jpeg

在这里插入图片描述

在这里插入图片描述

参考文献

[1] YOLOv8 源代码地址:https://github.com/ultralytics/ultralytics.git.
[2] YOLOv8 Docs:https://docs.ultralytics.com/
[3] https://docs.ultralytics.com/models/fast-sam/
[4] https://github.com/CASIA-IVA-Lab/FastSAM
[5] https://arxiv.org/abs/2306.12156
[6] Xu Zhao, Wenchao Ding, Yongqi An, Yinglong Du, Tao Yu, Min Li, Ming Tang, Jinqiao Wang. Fast Segment Anything. 2023

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

这篇关于YOLOv8 Ultralytics:使用Ultralytics框架进行FastSAM图像分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/606729

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他