[学习笔记]刘知远团队大模型技术与交叉应用L2-Neural Network Basics

本文主要是介绍[学习笔记]刘知远团队大模型技术与交叉应用L2-Neural Network Basics,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本节首先介绍神经网络的一些基本构成部分。然后简要介绍神经网络的训练方式。介绍一种基于神经网络的形成词汇的向量表示的方法。接下来继续介绍常见的神经网络结构:RNN和CNN。最后使用PyTorch演示一个NLP任务的一个完整训练的Pipeline。

神经网络的基本组成

单个神经元

(人工)神经元接受n个输入,1个输出。由参数w、b以及激活函数f来构成。
在这里插入图片描述

单层神经网络

多个单个神经元组成单层神经网络。
在这里插入图片描述

矩阵表示

在这里插入图片描述

多层神经网络

多个单层神经网络叠加在一起可以形成多层神经网络。
从前往后依次进行神经元的计算称为前向计算(传播)。
在这里插入图片描述

前向计算

前向计算过程中,中间神经元的输出结果被称为隐层输出,用符号h表示。
在这里插入图片描述

为什么要用非线性激活函数f?

如果没有非线性激活函数,那么多层神经网络本质上等价为单层神经网络。所以非线性激活函数对保持神经网络的层数,提高神经网络的表达能力是必要的。
在这里插入图片描述

常见的激活函数

sigmoid:将实数转化为(0,1)上的数
Tanh:将实数转化为(-1,1)上的数
ReLU:将负数全部转为0,正数保留
在这里插入图片描述

网络的输出层

输出层有多种形态,取决于模型的要求。以线性输出和sigmoid输出层为例。
线性输出层一般用于回归问题。
sigmoid输出层可以用于解决二分类问题:将隐层结果压到(0,1),然后这个值用于概率。
softmax输出层可以解决多分类问题:首先将隐层结果转化为我们分类的维度长的向量,然后经过softmax函数转化为概率向量。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

如何训练一个神经网路

训练目标

回归问题,可以用最小化均方差作为训练目标。
在这里插入图片描述
分类问题,可以用最小化交叉熵作为训练目标。
在这里插入图片描述

随机梯度下降

沿着负梯度方向可以使函数值下降。
在这里插入图片描述

梯度

在这里插入图片描述

链式法则

在这里插入图片描述

反向传播

在实际深度学习场景中,对每个参数梯度的计算是通过反向传播算法实现的。
下面先介绍计算图的概念。

计算图

在这里插入图片描述

反向传播

在这里插入图片描述

反向传播(单个节点)

链式法则可以将上游梯度和下游梯度通过本地梯度链接起来。
在这里插入图片描述

词向量表示:Word2Vec

Word2Vec实际上有两类模型,一类是Continuous bag-of-words(CBOW),一类叫Continuous skip-gram。
在这里插入图片描述

滑动窗口

Word2Vec使用滑动窗口来构造训练数据。滑动窗口是指一段文本中连续出现的几个单词。窗口中间的词称为target,其他被称为context。
CBOW是根据context词来预测target词的模型。
skip-gram则相反,是根据target词来预测context词的模型。
在这里插入图片描述
例子
在这里插入图片描述

CBOW模型

bag-of-word假设不考虑context词的顺序对target词的预测的影响。
Never to late to learn这句话为例,应用CBOW模型。假设窗口大小为3,就是要用never,late来预测too。
下面是CBOW的网络结构。
在这里插入图片描述

Skip-Gram模型

下面是Skip-Gram的模型结构。
在这里插入图片描述

Full Softmax的问题

上面两个模型,最后都将转化为分类问题,最后经过映射到词表大小的频率向量中,最后再使用cross entropy loss来进行训练。
但是当词表非常大的时候,进行softmax后,进行反向传播的计算量非常大。所以需要想办法提高计算的效率。
下面介绍两种提高计算效率的方法:

负采样(Negative sampling)

想法是不对所有负例更新权重,而是采样其中一部分进行权重更新。采样的依据是词的频率,词频越高越容易被采样。
在这里插入图片描述
在这里插入图片描述
负采样使得最后需要更新的参数量下降很多,使Word2Vec模型计算成为可能。
在这里插入图片描述

分层softmax(Hierarchical softmax)

Word2Vec的其他训练技巧

Sub-Sampling

为了平衡常见词和罕见词出现的频率。一般而言,罕见词出现概率低,但是可能包含丰富语义信息,所以利用下面的公式计算去掉一些词的概率。具体来说,如果一个词出现频次高,那么这个词被去掉的概率就越高。
在这里插入图片描述

非固定大小的滑动窗口

前面讲到的context词处于平等地位。实际上,如果考虑离target词近的词可能比远离target词的context词更与target词相关。所以可以考虑使用不固定大小的滑动窗口。它的大小根据采样得到。这样离target词近的词有更大概率被采样和训练。
在这里插入图片描述

循环神经网络RNNs

下图是RNN的神经网络结构。
在这里插入图片描述

RNN单元

上面的RNN网络结构可以看成是RNN单元的复制。
RNN当前隐藏状态的值是依赖于过去隐藏状态值的。
在这里插入图片描述

RNN语言模型

下面是一个例子。可以发现其中的参数是共享的,这有助于模型可以泛化到不同长度的样本。也有助于减少参数量。
在这里插入图片描述

RNN的应用场景

序列标注(Sequence Labelling):给定一句话,要求给出每个词的词性
序列预测(Sequence Prediction):给定一周七天的温度,预测每天的天气情况
图片描述(Photograph Description):给定图片,创造一句话来描述对应图片
文本分类(Text Classification):给定一句话,区分其情感是正面还是负面的

RNN的优缺点

优点:

  • 可以处理变长数据
  • 模型大小不会随着输入的增大而增大
  • 权重是共享的
  • 后面的计算理论上可以获取到前面的信息

缺点:

  • 顺序计算很慢
  • 实际应用中,后面的计算很难获取到前面的信息

RNN上的梯度问题-梯度消失/爆炸

在这里插入图片描述
为了解决RNN的缺陷,需要更优的RNN单元。因此提出了两个变体,分别是GRU和LSTM。

Gated Recurrent Unit(GRU)

在传统RNN中引入gating机制。分别引入更新门和重置门。这两个门的作用是权衡过去信息和当前信息的影响。
在这里插入图片描述
在这里插入图片描述
下面演示一个GRU的计算。
分别计算重置门的系数,更新门的系数。新的临时隐藏层参数。再加上上一层隐藏层的输出。利用这些就可以计算需要传输到下一层的隐藏变量hi
在这里插入图片描述
当重置门的系数为0时,则上一层隐藏层的输入不参与这一层临时隐藏层的计算。
一个例子是,一个新文章的开头,过去的信息是无用的。
在这里插入图片描述
更新门的系数接近1,则表示当前层的输出近似等于上一层的隐藏层输出。
如果系数接近0,则当前层的输出近似等于当前层临时隐藏变量,相当于丢弃了之前的状态。
在这里插入图片描述

卷积神经网络CNNs

这篇关于[学习笔记]刘知远团队大模型技术与交叉应用L2-Neural Network Basics的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/606621

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩